广义Vaerstein符号

IF 0.5 Q3 MATHEMATICS
T. Syed
{"title":"广义Vaerstein符号","authors":"T. Syed","doi":"10.2140/akt.2019.4.671","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring with $2 \\in R^{\\times}$. Then the usual Vaserstein symbol is a map from the orbit space of unimodular rows of length $3$ under the action of the group $E_3 (R)$ to the elementary symplectic Witt group. Now let $P_0$ be a projective module of rank $2$ with trivial determinant. Then we provide a generalized symbol map which is defined on the orbit space of the set of epimorphisms $P_0 \\oplus R \\rightarrow R$ under the action of the group of elementary automorphisms of $P_0 \\oplus R$. We also generalize results by Vaserstein and Suslin on the surjectivity and injectivity of the Vaserstein symbol. Finally, we use local-global principles for transvection groups in order to deduce that the generalized Vaserstein symbol is an isomorphism if $R$ is a regular Noetherian ring of dimension $2$ or a regular affine algebra of dimension $3$ over a field $k$ with $c.d.(k) \\leq 1$ and $6 \\in k^{\\times}$.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2017-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2019.4.671","citationCount":"6","resultStr":"{\"title\":\"A generalized Vaserstein symbol\",\"authors\":\"T. Syed\",\"doi\":\"10.2140/akt.2019.4.671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a ring with $2 \\\\in R^{\\\\times}$. Then the usual Vaserstein symbol is a map from the orbit space of unimodular rows of length $3$ under the action of the group $E_3 (R)$ to the elementary symplectic Witt group. Now let $P_0$ be a projective module of rank $2$ with trivial determinant. Then we provide a generalized symbol map which is defined on the orbit space of the set of epimorphisms $P_0 \\\\oplus R \\\\rightarrow R$ under the action of the group of elementary automorphisms of $P_0 \\\\oplus R$. We also generalize results by Vaserstein and Suslin on the surjectivity and injectivity of the Vaserstein symbol. Finally, we use local-global principles for transvection groups in order to deduce that the generalized Vaserstein symbol is an isomorphism if $R$ is a regular Noetherian ring of dimension $2$ or a regular affine algebra of dimension $3$ over a field $k$ with $c.d.(k) \\\\leq 1$ and $6 \\\\in k^{\\\\times}$.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/akt.2019.4.671\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2019.4.671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2019.4.671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

设$R$是R^{\times}$中带有$2的环。则通常的Vaserstein符号是在群$E_3(R)$的作用下从长度为$3$的单模行的轨道空间到初等辛Witt群的映射。现在让$P_0$是具有平凡行列式的秩为$2$的投影模。然后我们给出了在$P_0\oplus R$的初等自同构群的作用下,在一组差向同构$P_0\oplus R\rightarrow R$的轨道空间上定义的广义符号映射。我们还推广了Vaserstein和Suslin关于Vaserstein符号的满射性和内射性的结果。最后,我们使用横截群的局部全局原理来推导广义Vaerstein符号是同构的,如果$R$是域$k$上的维数为$2$的正则Noetherian环或维数为$3$的正则仿射代数,其中$c.d.(k)\leq1$和$6\在k^{\times}$中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized Vaserstein symbol
Let $R$ be a ring with $2 \in R^{\times}$. Then the usual Vaserstein symbol is a map from the orbit space of unimodular rows of length $3$ under the action of the group $E_3 (R)$ to the elementary symplectic Witt group. Now let $P_0$ be a projective module of rank $2$ with trivial determinant. Then we provide a generalized symbol map which is defined on the orbit space of the set of epimorphisms $P_0 \oplus R \rightarrow R$ under the action of the group of elementary automorphisms of $P_0 \oplus R$. We also generalize results by Vaserstein and Suslin on the surjectivity and injectivity of the Vaserstein symbol. Finally, we use local-global principles for transvection groups in order to deduce that the generalized Vaserstein symbol is an isomorphism if $R$ is a regular Noetherian ring of dimension $2$ or a regular affine algebra of dimension $3$ over a field $k$ with $c.d.(k) \leq 1$ and $6 \in k^{\times}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信