植物寄生线虫自动识别的深度学习模型

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Nabila Husna Shabrina , Ryukin Aranta Lika , Siwi Indarti
{"title":"植物寄生线虫自动识别的深度学习模型","authors":"Nabila Husna Shabrina ,&nbsp;Ryukin Aranta Lika ,&nbsp;Siwi Indarti","doi":"10.1016/j.aiia.2022.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Plant-parasitic nematodes cause various diseases that can be fatal to the infected plants. It causes losses to the agricultural industry, such as crop failure and poor crop quality. Developing an accurate nematode classification system is vital for pest identification and control. Deep learning classification techniques can help speed up Nematode identification as it can perform tasks directly from images. In the present study, four state-of-the-art deep learning models (ResNet101v2, CoAtNet-0, Effi- cientNetV2B0, and EfficientNetV2M) were evaluated in plant-parasitic nematode classification from microscopic image. The models were trained using a combination of three different optimizers (Adam, SGD, dan RMSProp) and several data augmentation with image transformations, such as image flip, blurring, noise addition, brightness, and contrast adjustment. The performance of the trained models was varied. Regarding test accuracy, EfficientNetV2B0 and EfficientNetV2M using RMSProp and brightness augmentation give the best result of 97.94% However, the overall performance of EfficientNetV2M was superior, with 98.66% mean class accuracy, 97.99%F1 score, 98.26% average precision, and 97.94% average recall.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"7 ","pages":"Pages 1-12"},"PeriodicalIF":8.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deep learning models for automatic identification of plant-parasitic nematode\",\"authors\":\"Nabila Husna Shabrina ,&nbsp;Ryukin Aranta Lika ,&nbsp;Siwi Indarti\",\"doi\":\"10.1016/j.aiia.2022.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plant-parasitic nematodes cause various diseases that can be fatal to the infected plants. It causes losses to the agricultural industry, such as crop failure and poor crop quality. Developing an accurate nematode classification system is vital for pest identification and control. Deep learning classification techniques can help speed up Nematode identification as it can perform tasks directly from images. In the present study, four state-of-the-art deep learning models (ResNet101v2, CoAtNet-0, Effi- cientNetV2B0, and EfficientNetV2M) were evaluated in plant-parasitic nematode classification from microscopic image. The models were trained using a combination of three different optimizers (Adam, SGD, dan RMSProp) and several data augmentation with image transformations, such as image flip, blurring, noise addition, brightness, and contrast adjustment. The performance of the trained models was varied. Regarding test accuracy, EfficientNetV2B0 and EfficientNetV2M using RMSProp and brightness augmentation give the best result of 97.94% However, the overall performance of EfficientNetV2M was superior, with 98.66% mean class accuracy, 97.99%F1 score, 98.26% average precision, and 97.94% average recall.</p></div>\",\"PeriodicalId\":52814,\"journal\":{\"name\":\"Artificial Intelligence in Agriculture\",\"volume\":\"7 \",\"pages\":\"Pages 1-12\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Agriculture\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721723000016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721723000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

植物寄生线虫会引起各种疾病,对受感染的植物来说可能是致命的。它给农业造成损失,如作物歉收和作物质量差。开发准确的线虫分类系统对害虫识别和控制至关重要。深度学习分类技术可以帮助加快线虫的识别,因为它可以直接从图像中执行任务。在本研究中,从微观图像对四种最先进的深度学习模型(ResNet101v2、CoAtNet-0、EfficientNetV2B0和EfficientNetV2M)在植物寄生线虫分类中进行了评估。使用三种不同的优化器(Adam、SGD和RMSProp)的组合以及通过图像转换(如图像翻转、模糊、噪声添加、亮度和对比度调整)进行的几种数据增强来训练模型。经过训练的模型的性能各不相同。在测试准确度方面,使用RMSProp和亮度增强的EfficientNetV2B0和EfficientNetV2M给出了97.94%的最佳结果。然而,EfficientNetV2M的总体性能优越,平均类准确度为98.66%,F1得分为97.99%,平均准确度为97.26%,平均召回率为97.94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning models for automatic identification of plant-parasitic nematode

Plant-parasitic nematodes cause various diseases that can be fatal to the infected plants. It causes losses to the agricultural industry, such as crop failure and poor crop quality. Developing an accurate nematode classification system is vital for pest identification and control. Deep learning classification techniques can help speed up Nematode identification as it can perform tasks directly from images. In the present study, four state-of-the-art deep learning models (ResNet101v2, CoAtNet-0, Effi- cientNetV2B0, and EfficientNetV2M) were evaluated in plant-parasitic nematode classification from microscopic image. The models were trained using a combination of three different optimizers (Adam, SGD, dan RMSProp) and several data augmentation with image transformations, such as image flip, blurring, noise addition, brightness, and contrast adjustment. The performance of the trained models was varied. Regarding test accuracy, EfficientNetV2B0 and EfficientNetV2M using RMSProp and brightness augmentation give the best result of 97.94% However, the overall performance of EfficientNetV2M was superior, with 98.66% mean class accuracy, 97.99%F1 score, 98.26% average precision, and 97.94% average recall.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信