Torelli轨迹和牛顿地层之间的一些不太可能的交叉点𝒜 g

IF 0.3 4区 数学 Q4 MATHEMATICS
Joe Kramer-Miller
{"title":"Torelli轨迹和牛顿地层之间的一些不太可能的交叉点𝒜 g","authors":"Joe Kramer-Miller","doi":"10.5802/JTNB.1159","DOIUrl":null,"url":null,"abstract":"Let $p$ be an odd prime. What are the possible Newton polygons for a curve in characteristic $p$? Equivalently, which Newton strata intersect the Torelli locus in $\\mathcal{A}_g$? In this note, we study the Newton polygons of certain curves with $\\mathbb{Z}/p\\mathbb{Z}$-actions. Many of these curves exhibit unlikely intersections between the Torelli locus and the Newton stratification in $\\mathcal{A}_g$. Here is one example of particular interest: fix a genus $g$. We show that for any $k$ with $\\frac{2g}{3}-\\frac{2p(p-1)}{3}\\geq 2k(p-1)$, there exists a curve of genus $g$ whose Newton polygon has slopes $\\{0,1\\}^{g-k(p-1)} \\sqcup \\{\\frac{1}{2}\\}^{2k(p-1)}$. This provides evidence for Oort's conjecture that the amalgamation of the Newton polygons of two curves is again the Newton polygon of a curve. We also construct families of curves $\\{C_g\\}_{g \\geq 1}$, where $C_g$ is a curve of genus $g$, whose Newton polygons have interesting asymptotic properties. For example, we construct a family of curves whose Newton polygons are asymptotically bounded below by the graph $y=\\frac{x^2}{4g}$. The proof uses a Newton-over-Hodge result for $\\mathbb{Z}/p\\mathbb{Z}$-covers of curves due to the author, in addition to recent work of Booher-Pries on the realization of this Hodge bound.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some unlikely intersections between the Torelli locus and Newton strata in 𝒜 g\",\"authors\":\"Joe Kramer-Miller\",\"doi\":\"10.5802/JTNB.1159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be an odd prime. What are the possible Newton polygons for a curve in characteristic $p$? Equivalently, which Newton strata intersect the Torelli locus in $\\\\mathcal{A}_g$? In this note, we study the Newton polygons of certain curves with $\\\\mathbb{Z}/p\\\\mathbb{Z}$-actions. Many of these curves exhibit unlikely intersections between the Torelli locus and the Newton stratification in $\\\\mathcal{A}_g$. Here is one example of particular interest: fix a genus $g$. We show that for any $k$ with $\\\\frac{2g}{3}-\\\\frac{2p(p-1)}{3}\\\\geq 2k(p-1)$, there exists a curve of genus $g$ whose Newton polygon has slopes $\\\\{0,1\\\\}^{g-k(p-1)} \\\\sqcup \\\\{\\\\frac{1}{2}\\\\}^{2k(p-1)}$. This provides evidence for Oort's conjecture that the amalgamation of the Newton polygons of two curves is again the Newton polygon of a curve. We also construct families of curves $\\\\{C_g\\\\}_{g \\\\geq 1}$, where $C_g$ is a curve of genus $g$, whose Newton polygons have interesting asymptotic properties. For example, we construct a family of curves whose Newton polygons are asymptotically bounded below by the graph $y=\\\\frac{x^2}{4g}$. The proof uses a Newton-over-Hodge result for $\\\\mathbb{Z}/p\\\\mathbb{Z}$-covers of curves due to the author, in addition to recent work of Booher-Pries on the realization of this Hodge bound.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/JTNB.1159\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/JTNB.1159","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$p$为奇数素数。特征$p$中曲线的牛顿多边形可能是什么?等价地,哪个牛顿地层与$\mathcal中的Torelli轨迹相交{A}_g$?在本文中,我们研究了具有$\mathbb{Z}/p\mathbb{Z}$作用的某些曲线的牛顿多边形。这些曲线中的许多曲线在$\mathcal中显示出Torelli轨迹和牛顿分层之间不太可能的交叉点{A}_g$。这里有一个特别有趣的例子:修复一个属$g$。我们证明,对于任何$k$和$\frac{2g}{3}-\frac{2p(p-1)}{3}\geq2k(p-1。这为奥尔特的猜想提供了证据,即两条曲线的牛顿多边形的合并再次是曲线的牛顿多面体。我们还构造了曲线$\{C_g\}_{g\geq1}$的族,其中$C_g$是亏格$g$的曲线,其牛顿多边形具有有趣的渐近性质。例如,我们构造了一个曲线族,其牛顿多边形在下面渐近有界于图$y=\frac{x^2}{4g}$。证明使用了作者对$\mathbb{Z}/p\mathbb{Z}$曲线覆盖的Newton-over-Hodge结果,以及Booher-Pries最近关于实现该Hodge界的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some unlikely intersections between the Torelli locus and Newton strata in 𝒜 g
Let $p$ be an odd prime. What are the possible Newton polygons for a curve in characteristic $p$? Equivalently, which Newton strata intersect the Torelli locus in $\mathcal{A}_g$? In this note, we study the Newton polygons of certain curves with $\mathbb{Z}/p\mathbb{Z}$-actions. Many of these curves exhibit unlikely intersections between the Torelli locus and the Newton stratification in $\mathcal{A}_g$. Here is one example of particular interest: fix a genus $g$. We show that for any $k$ with $\frac{2g}{3}-\frac{2p(p-1)}{3}\geq 2k(p-1)$, there exists a curve of genus $g$ whose Newton polygon has slopes $\{0,1\}^{g-k(p-1)} \sqcup \{\frac{1}{2}\}^{2k(p-1)}$. This provides evidence for Oort's conjecture that the amalgamation of the Newton polygons of two curves is again the Newton polygon of a curve. We also construct families of curves $\{C_g\}_{g \geq 1}$, where $C_g$ is a curve of genus $g$, whose Newton polygons have interesting asymptotic properties. For example, we construct a family of curves whose Newton polygons are asymptotically bounded below by the graph $y=\frac{x^2}{4g}$. The proof uses a Newton-over-Hodge result for $\mathbb{Z}/p\mathbb{Z}$-covers of curves due to the author, in addition to recent work of Booher-Pries on the realization of this Hodge bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信