{"title":"乘积空间的集中","authors":"Daisuke Kazukawa","doi":"10.1515/agms-2020-0129","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the relation between the concentration and the product of metric measure spaces. We have the natural question whether, for two concentrating sequences of metric measure spaces, the sequence of their product spaces also concentrates. A partial answer is mentioned in Gromov’s book [4]. We obtain a complete answer for this question.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"9 1","pages":"186 - 218"},"PeriodicalIF":0.9000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Concentration of Product Spaces\",\"authors\":\"Daisuke Kazukawa\",\"doi\":\"10.1515/agms-2020-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the relation between the concentration and the product of metric measure spaces. We have the natural question whether, for two concentrating sequences of metric measure spaces, the sequence of their product spaces also concentrates. A partial answer is mentioned in Gromov’s book [4]. We obtain a complete answer for this question.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"9 1\",\"pages\":\"186 - 218\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0129\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0129","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We investigate the relation between the concentration and the product of metric measure spaces. We have the natural question whether, for two concentrating sequences of metric measure spaces, the sequence of their product spaces also concentrates. A partial answer is mentioned in Gromov’s book [4]. We obtain a complete answer for this question.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.