解析误差函数与几何求逆

Pub Date : 2023-02-24 DOI:10.3390/stats6010026
D. Martila, S. Groote
{"title":"解析误差函数与几何求逆","authors":"D. Martila, S. Groote","doi":"10.3390/stats6010026","DOIUrl":null,"url":null,"abstract":"Using geometric considerations, we provided a clear derivation of the integral representation for the error function, known as the Craig formula. We calculated the corresponding power series expansion and proved the convergence. The same geometric means finally assisted in systematically deriving useful formulas that approximated the inverse error function. Our approach could be used for applications in high-speed Monte Carlo simulations, where this function is used extensively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic Error Function and Numeric Inverse Obtained by Geometric Means\",\"authors\":\"D. Martila, S. Groote\",\"doi\":\"10.3390/stats6010026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using geometric considerations, we provided a clear derivation of the integral representation for the error function, known as the Craig formula. We calculated the corresponding power series expansion and proved the convergence. The same geometric means finally assisted in systematically deriving useful formulas that approximated the inverse error function. Our approach could be used for applications in high-speed Monte Carlo simulations, where this function is used extensively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats6010026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用几何考虑,我们提供了误差函数积分表示的清晰推导,称为Craig公式。我们计算了相应的幂级数展开式,并证明了其收敛性。同样的几何平均数最终有助于系统地推导出近似误差反函数的有用公式。我们的方法可用于高速蒙特卡罗模拟中的应用,在这种模拟中,该函数被广泛使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Analytic Error Function and Numeric Inverse Obtained by Geometric Means
Using geometric considerations, we provided a clear derivation of the integral representation for the error function, known as the Craig formula. We calculated the corresponding power series expansion and proved the convergence. The same geometric means finally assisted in systematically deriving useful formulas that approximated the inverse error function. Our approach could be used for applications in high-speed Monte Carlo simulations, where this function is used extensively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信