回归系数的幂分析:多个预测器的作用和同时检测所有系数的幂

IF 1.3
C. Aberson, Josue E. Rodriguez, Danielle Siegel
{"title":"回归系数的幂分析:多个预测器的作用和同时检测所有系数的幂","authors":"C. Aberson, Josue E. Rodriguez, Danielle Siegel","doi":"10.20982/tqmp.18.2.p142","DOIUrl":null,"url":null,"abstract":"Many tools exist for power analyses focused on R 2 Model (the variance explained by all the predictors together) but tools for estimating power for coefficients often require complicated inputs that are neither intuitive nor simple to estimate. Further compounding this issue is the recognition that power to detect effects for all predictors in a model tends to be substantially lower than power to detect individual effects. In short, most available power analysis approaches ignore the probability of detecting all effects and focus on probability of detecting individual effects. The consequences of this are designs that are underpowered to detect effects. The present work presents tools for addressing these issues via simulation approaches provided by the pwr2ppl package (Aberson, 2019) and an associated Shiny app.","PeriodicalId":93055,"journal":{"name":"The quantitative methods for psychology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Analysis for Regression Coefficients: The Role of Multiple Predictors and Power to Detect all Coefficients Simultaneously\",\"authors\":\"C. Aberson, Josue E. Rodriguez, Danielle Siegel\",\"doi\":\"10.20982/tqmp.18.2.p142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many tools exist for power analyses focused on R 2 Model (the variance explained by all the predictors together) but tools for estimating power for coefficients often require complicated inputs that are neither intuitive nor simple to estimate. Further compounding this issue is the recognition that power to detect effects for all predictors in a model tends to be substantially lower than power to detect individual effects. In short, most available power analysis approaches ignore the probability of detecting all effects and focus on probability of detecting individual effects. The consequences of this are designs that are underpowered to detect effects. The present work presents tools for addressing these issues via simulation approaches provided by the pwr2ppl package (Aberson, 2019) and an associated Shiny app.\",\"PeriodicalId\":93055,\"journal\":{\"name\":\"The quantitative methods for psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quantitative methods for psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20982/tqmp.18.2.p142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quantitative methods for psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20982/tqmp.18.2.p142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多工具都是针对r2模型(所有预测因子共同解释的方差)进行功率分析的,但是用于估计系数功率的工具通常需要复杂的输入,既不直观,也不容易估计。进一步使这个问题复杂化的是,人们认识到,检测模型中所有预测因子的影响的能力往往大大低于检测单个影响的能力。简而言之,大多数可用的功率分析方法忽略了检测所有影响的概率,而关注检测单个影响的概率。这样做的结果是设计无法检测效果。目前的工作提供了通过pwr2ppl包(Aberson, 2019)和相关的Shiny应用程序提供的模拟方法解决这些问题的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Analysis for Regression Coefficients: The Role of Multiple Predictors and Power to Detect all Coefficients Simultaneously
Many tools exist for power analyses focused on R 2 Model (the variance explained by all the predictors together) but tools for estimating power for coefficients often require complicated inputs that are neither intuitive nor simple to estimate. Further compounding this issue is the recognition that power to detect effects for all predictors in a model tends to be substantially lower than power to detect individual effects. In short, most available power analysis approaches ignore the probability of detecting all effects and focus on probability of detecting individual effects. The consequences of this are designs that are underpowered to detect effects. The present work presents tools for addressing these issues via simulation approaches provided by the pwr2ppl package (Aberson, 2019) and an associated Shiny app.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信