{"title":"关于数值半径和Krein-Lin不等式的一个注记","authors":"S. Dragomir","doi":"10.24193/MATHCLUJ.2018.2.06","DOIUrl":null,"url":null,"abstract":"In this note we show that the Kre¼¬n-Lin triangle inequality can be naturally applied to obtain an elegant reverse for a classical numerical radius power inequality for bounded linear operators on complex Hilbert space due to C. Pearcy.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A note on numerical radius and the Krein-Lin inequality\",\"authors\":\"S. Dragomir\",\"doi\":\"10.24193/MATHCLUJ.2018.2.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we show that the Kre¼¬n-Lin triangle inequality can be naturally applied to obtain an elegant reverse for a classical numerical radius power inequality for bounded linear operators on complex Hilbert space due to C. Pearcy.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/MATHCLUJ.2018.2.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/MATHCLUJ.2018.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
A note on numerical radius and the Krein-Lin inequality
In this note we show that the Kre¼¬n-Lin triangle inequality can be naturally applied to obtain an elegant reverse for a classical numerical radius power inequality for bounded linear operators on complex Hilbert space due to C. Pearcy.