{"title":"同伦理论及其在互无偏基上的应用,图上的调和分析,和反常束","authors":"A. Bondal, I. Zhdanovskiy","doi":"10.1070/RM9983","DOIUrl":null,"url":null,"abstract":"This paper is a survey of contemporary results and applications of the theory of homotopes. The notion of a well-tempered element of an associative algebra is introduced, and it is proved that the category of representations of the homotope constructed by a well-tempered element is the heart of a suitably glued -structure. The Hochschild and global dimensions of homotopes are calculated in the case of well-tempered elements. The homotopes constructed from generalized Laplace operators in Poincaré groupoids of graphs are studied. It is shown that they are quotients of Temperley–Lieb algebras of general graphs. The perverse sheaves on a punctured disc and on a 2-dimensional sphere with a double point are identified with representations of suitable homotopes. Relations of the theory to orthogonal decompositions of the Lie algebras into a sum of Cartan subalgebras, to classifications of configurations of lines, to mutually unbiased bases, to quantum protocols, and to generalized Hadamard matrices are discussed. Bibliography: 56 titles.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves\",\"authors\":\"A. Bondal, I. Zhdanovskiy\",\"doi\":\"10.1070/RM9983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is a survey of contemporary results and applications of the theory of homotopes. The notion of a well-tempered element of an associative algebra is introduced, and it is proved that the category of representations of the homotope constructed by a well-tempered element is the heart of a suitably glued -structure. The Hochschild and global dimensions of homotopes are calculated in the case of well-tempered elements. The homotopes constructed from generalized Laplace operators in Poincaré groupoids of graphs are studied. It is shown that they are quotients of Temperley–Lieb algebras of general graphs. The perverse sheaves on a punctured disc and on a 2-dimensional sphere with a double point are identified with representations of suitable homotopes. Relations of the theory to orthogonal decompositions of the Lie algebras into a sum of Cartan subalgebras, to classifications of configurations of lines, to mutually unbiased bases, to quantum protocols, and to generalized Hadamard matrices are discussed. Bibliography: 56 titles.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM9983\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9983","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves
This paper is a survey of contemporary results and applications of the theory of homotopes. The notion of a well-tempered element of an associative algebra is introduced, and it is proved that the category of representations of the homotope constructed by a well-tempered element is the heart of a suitably glued -structure. The Hochschild and global dimensions of homotopes are calculated in the case of well-tempered elements. The homotopes constructed from generalized Laplace operators in Poincaré groupoids of graphs are studied. It is shown that they are quotients of Temperley–Lieb algebras of general graphs. The perverse sheaves on a punctured disc and on a 2-dimensional sphere with a double point are identified with representations of suitable homotopes. Relations of the theory to orthogonal decompositions of the Lie algebras into a sum of Cartan subalgebras, to classifications of configurations of lines, to mutually unbiased bases, to quantum protocols, and to generalized Hadamard matrices are discussed. Bibliography: 56 titles.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.