{"title":"氯硼烷型分子的均相B–Cl键离解能","authors":"Wen-guan Lu, Robert J. O’Reilly","doi":"10.5564/mjc.v23i49.2016","DOIUrl":null,"url":null,"abstract":"This study reports accurate gas-phase homolytic B–Cl bond dissociation energies, obtained using the benchmark-quality W1w thermochemical protocol, for a set of 25 chloroborane-type molecules (known herein as the BCl25BDE dataset). The BDEs of these species differ by as much as 136.5 kJ mol-1 at 298 K, with (BH2)2BCl having the lowest BDE (388.5 kJ mol-1 at 298 K) and (CH3)HBCl having the highest (525.1 kJ mol-1 ). Using the W1w BDEs as reference values, the accuracy of a diverse set of more economical DFT procedures (which may be applied to the study of molecules sufficiently large that the use of benchmark-quality methods such as W1w is rendered computationally prohibitive) have been investigated. As a result of this analysis, the most accurate methods for the computation of B–Cl BDEs are ωB97/A'VQZ (MAD = 3.0 kJ mol-1 ) and M06/A'VTZ (MAD = 3.2 kJ mol-1 ). The double-hybrid functional DSD-PBEP86 in conjunction with the A'VQZ basis set (MAD = 4.0 kJ mol-1 ) was found to give the lowest largest deviation (LD = 6.4 kJ mol-1 ) of any of methods considered in this assessment study.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Homolytic B–Cl bond dissociation energies of chloroborane-type molecules\",\"authors\":\"Wen-guan Lu, Robert J. O’Reilly\",\"doi\":\"10.5564/mjc.v23i49.2016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reports accurate gas-phase homolytic B–Cl bond dissociation energies, obtained using the benchmark-quality W1w thermochemical protocol, for a set of 25 chloroborane-type molecules (known herein as the BCl25BDE dataset). The BDEs of these species differ by as much as 136.5 kJ mol-1 at 298 K, with (BH2)2BCl having the lowest BDE (388.5 kJ mol-1 at 298 K) and (CH3)HBCl having the highest (525.1 kJ mol-1 ). Using the W1w BDEs as reference values, the accuracy of a diverse set of more economical DFT procedures (which may be applied to the study of molecules sufficiently large that the use of benchmark-quality methods such as W1w is rendered computationally prohibitive) have been investigated. As a result of this analysis, the most accurate methods for the computation of B–Cl BDEs are ωB97/A'VQZ (MAD = 3.0 kJ mol-1 ) and M06/A'VTZ (MAD = 3.2 kJ mol-1 ). The double-hybrid functional DSD-PBEP86 in conjunction with the A'VQZ basis set (MAD = 4.0 kJ mol-1 ) was found to give the lowest largest deviation (LD = 6.4 kJ mol-1 ) of any of methods considered in this assessment study.\",\"PeriodicalId\":36661,\"journal\":{\"name\":\"Mongolian Journal of Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mongolian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5564/mjc.v23i49.2016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mongolian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5564/mjc.v23i49.2016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
Homolytic B–Cl bond dissociation energies of chloroborane-type molecules
This study reports accurate gas-phase homolytic B–Cl bond dissociation energies, obtained using the benchmark-quality W1w thermochemical protocol, for a set of 25 chloroborane-type molecules (known herein as the BCl25BDE dataset). The BDEs of these species differ by as much as 136.5 kJ mol-1 at 298 K, with (BH2)2BCl having the lowest BDE (388.5 kJ mol-1 at 298 K) and (CH3)HBCl having the highest (525.1 kJ mol-1 ). Using the W1w BDEs as reference values, the accuracy of a diverse set of more economical DFT procedures (which may be applied to the study of molecules sufficiently large that the use of benchmark-quality methods such as W1w is rendered computationally prohibitive) have been investigated. As a result of this analysis, the most accurate methods for the computation of B–Cl BDEs are ωB97/A'VQZ (MAD = 3.0 kJ mol-1 ) and M06/A'VTZ (MAD = 3.2 kJ mol-1 ). The double-hybrid functional DSD-PBEP86 in conjunction with the A'VQZ basis set (MAD = 4.0 kJ mol-1 ) was found to give the lowest largest deviation (LD = 6.4 kJ mol-1 ) of any of methods considered in this assessment study.