不可压缩新胡克结构与Navier-Stokes流体相互作用的稳定半隐式整体格式

IF 0.8 4区 数学
Cornel Marius Murea sci
{"title":"不可压缩新胡克结构与Navier-Stokes流体相互作用的稳定半隐式整体格式","authors":"Cornel Marius Murea sci","doi":"10.4208/jms.v52n4.19.05","DOIUrl":null,"url":null,"abstract":"We present a monolithic algorithm for solving fluid-structure interaction. The Updated Lagrangian framework is used for the incompressible neo-hookean structure and Arbitrary Lagrangian Eulerian coordinate is employed for the Navier-Stokes equations. The algorithm uses a global mesh for the fluid-structure domain which is compatible with the fluid-structure interface. At each time step, a non-linear system is solved in a domain corresponding to the precedent time step. It is a semi-implicit algorithm in the sense that the velocity, the pressure are computed implicitly, but the domain is updated explicitly. Using one velocity field defined over the fluid-structure mesh, and globally continuous finite elements, the continuity of the velocity at the interface is automatically verified. The equation of the continuity of the stress at the interface does not appear in this formulation due to action and reaction principle. The stability in time is proved. A second algorithm is introduced where at each time step, only a linear system is solved in order to find the velocity and the pressure. Numerical experiments are presented. AMS subject classifications: 74F10, 65M12","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stable Semi-Implicit Monolithic Scheme for Interaction Between Incompressible Neo-hookean Structure and Navier-Stokes Fluid\",\"authors\":\"Cornel Marius Murea sci\",\"doi\":\"10.4208/jms.v52n4.19.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a monolithic algorithm for solving fluid-structure interaction. The Updated Lagrangian framework is used for the incompressible neo-hookean structure and Arbitrary Lagrangian Eulerian coordinate is employed for the Navier-Stokes equations. The algorithm uses a global mesh for the fluid-structure domain which is compatible with the fluid-structure interface. At each time step, a non-linear system is solved in a domain corresponding to the precedent time step. It is a semi-implicit algorithm in the sense that the velocity, the pressure are computed implicitly, but the domain is updated explicitly. Using one velocity field defined over the fluid-structure mesh, and globally continuous finite elements, the continuity of the velocity at the interface is automatically verified. The equation of the continuity of the stress at the interface does not appear in this formulation due to action and reaction principle. The stability in time is proved. A second algorithm is introduced where at each time step, only a linear system is solved in order to find the velocity and the pressure. Numerical experiments are presented. AMS subject classifications: 74F10, 65M12\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jms.v52n4.19.05\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v52n4.19.05","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种求解流固耦合的整体算法。不可压缩新hookean结构采用更新拉格朗日框架,Navier-Stokes方程采用任意拉格朗日欧拉坐标。该算法采用与流固界面兼容的流固域全局网格。在每一个时间步长,在前一个时间步长对应的域内求解一个非线性系统。它是一种半隐式算法,隐式地计算速度和压力,但显式地更新域。利用在流固网格上定义的一个速度场和全局连续的有限元,自动验证了界面处速度的连续性。由于作用和反作用原理,该公式中没有出现界面处应力的连续性方程。证明了其在时间上的稳定性。第二种算法是在每个时间步长,为了求出速度和压力,只求解一个线性系统。给出了数值实验结果。AMS学科分类:74F10, 65M12
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable Semi-Implicit Monolithic Scheme for Interaction Between Incompressible Neo-hookean Structure and Navier-Stokes Fluid
We present a monolithic algorithm for solving fluid-structure interaction. The Updated Lagrangian framework is used for the incompressible neo-hookean structure and Arbitrary Lagrangian Eulerian coordinate is employed for the Navier-Stokes equations. The algorithm uses a global mesh for the fluid-structure domain which is compatible with the fluid-structure interface. At each time step, a non-linear system is solved in a domain corresponding to the precedent time step. It is a semi-implicit algorithm in the sense that the velocity, the pressure are computed implicitly, but the domain is updated explicitly. Using one velocity field defined over the fluid-structure mesh, and globally continuous finite elements, the continuity of the velocity at the interface is automatically verified. The equation of the continuity of the stress at the interface does not appear in this formulation due to action and reaction principle. The stability in time is proved. A second algorithm is introduced where at each time step, only a linear system is solved in order to find the velocity and the pressure. Numerical experiments are presented. AMS subject classifications: 74F10, 65M12
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信