{"title":"具有3、4、7区别的奇异K3曲面的几何性质","authors":"Taiki Takatsu","doi":"10.2996/kmj/kmj45110","DOIUrl":null,"url":null,"abstract":"We give construction of singular K3 surfaces with discriminant 3 and 4 as double coverings over the projective plane. Focusing on the similarities in their branching loci, we can generalize this construction, and obtain a three dimensional moduli space of certain K3 surfaces which admit infinite automorphism groups. Moreover, we show that these K3 surfaces are characterized in terms of the configuration of the singular fibres and a global section, and also in terms of periods.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the geometry of singular K3 surfaces with discriminant 3, 4 and 7\",\"authors\":\"Taiki Takatsu\",\"doi\":\"10.2996/kmj/kmj45110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give construction of singular K3 surfaces with discriminant 3 and 4 as double coverings over the projective plane. Focusing on the similarities in their branching loci, we can generalize this construction, and obtain a three dimensional moduli space of certain K3 surfaces which admit infinite automorphism groups. Moreover, we show that these K3 surfaces are characterized in terms of the configuration of the singular fibres and a global section, and also in terms of periods.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj/kmj45110\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj/kmj45110","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the geometry of singular K3 surfaces with discriminant 3, 4 and 7
We give construction of singular K3 surfaces with discriminant 3 and 4 as double coverings over the projective plane. Focusing on the similarities in their branching loci, we can generalize this construction, and obtain a three dimensional moduli space of certain K3 surfaces which admit infinite automorphism groups. Moreover, we show that these K3 surfaces are characterized in terms of the configuration of the singular fibres and a global section, and also in terms of periods.
期刊介绍:
Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.