{"title":"水文气候区域变化下原始索罗涅茨平原微形态变化监测(俄罗斯北里海低地)","authors":"M. Lebedeva, M. Konyushkova, S. Khokhlov","doi":"10.3232/SJSS.2018.V8.N2.03","DOIUrl":null,"url":null,"abstract":"Over the past 40 years, a clear trend towards an increasing humidity and a rising groundwater table has been observed in the south-eastern semidesert part of European Russia. According to the published data, two clear periods of climate are distinguished: 1950s-1970s and 1970s-2000s. The thin sections of a Solonetz sampled in different periods of time (1950s, 1960s, 1970s, 1982, 2002 and 2013) at the Dzhanybek research station were studied micromorphologically to observe how these natural changes influenced soil pedofeatures. A comparison of thin sections showed no significant changes in soil properties between 1950s and 1982, when the hydrological (ground water table) and climatic parameters remained relatively stable. However, between 1982 and 2013, due to a significant increase in climatic moisture and rising groundwater, the following changes in soil microfeatures took place: the activation of humus accumulation and biogenic structuring, the eluviation of the silty clay-humus matter, the development of solodic features, gleyization of the soil mass, and the accumulation of opaque black organic grains about 2-3 µm formed in the topsoil due to the long stagnation during the springtime after snow melting. The water table rise leads to the consequent rise of the upper boundary of the accumulation of gypsum and carbonates.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monitoring of micromorphological changes in a virgin Solonetz under regional changes in hydrology and climate (Northern Caspian Lowland, Russia)\",\"authors\":\"M. Lebedeva, M. Konyushkova, S. Khokhlov\",\"doi\":\"10.3232/SJSS.2018.V8.N2.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past 40 years, a clear trend towards an increasing humidity and a rising groundwater table has been observed in the south-eastern semidesert part of European Russia. According to the published data, two clear periods of climate are distinguished: 1950s-1970s and 1970s-2000s. The thin sections of a Solonetz sampled in different periods of time (1950s, 1960s, 1970s, 1982, 2002 and 2013) at the Dzhanybek research station were studied micromorphologically to observe how these natural changes influenced soil pedofeatures. A comparison of thin sections showed no significant changes in soil properties between 1950s and 1982, when the hydrological (ground water table) and climatic parameters remained relatively stable. However, between 1982 and 2013, due to a significant increase in climatic moisture and rising groundwater, the following changes in soil microfeatures took place: the activation of humus accumulation and biogenic structuring, the eluviation of the silty clay-humus matter, the development of solodic features, gleyization of the soil mass, and the accumulation of opaque black organic grains about 2-3 µm formed in the topsoil due to the long stagnation during the springtime after snow melting. The water table rise leads to the consequent rise of the upper boundary of the accumulation of gypsum and carbonates.\",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3232/SJSS.2018.V8.N2.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3232/SJSS.2018.V8.N2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Monitoring of micromorphological changes in a virgin Solonetz under regional changes in hydrology and climate (Northern Caspian Lowland, Russia)
Over the past 40 years, a clear trend towards an increasing humidity and a rising groundwater table has been observed in the south-eastern semidesert part of European Russia. According to the published data, two clear periods of climate are distinguished: 1950s-1970s and 1970s-2000s. The thin sections of a Solonetz sampled in different periods of time (1950s, 1960s, 1970s, 1982, 2002 and 2013) at the Dzhanybek research station were studied micromorphologically to observe how these natural changes influenced soil pedofeatures. A comparison of thin sections showed no significant changes in soil properties between 1950s and 1982, when the hydrological (ground water table) and climatic parameters remained relatively stable. However, between 1982 and 2013, due to a significant increase in climatic moisture and rising groundwater, the following changes in soil microfeatures took place: the activation of humus accumulation and biogenic structuring, the eluviation of the silty clay-humus matter, the development of solodic features, gleyization of the soil mass, and the accumulation of opaque black organic grains about 2-3 µm formed in the topsoil due to the long stagnation during the springtime after snow melting. The water table rise leads to the consequent rise of the upper boundary of the accumulation of gypsum and carbonates.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.