基于分数积分边界条件的隐式二阶微分方程解的存在性和Hyers-Ulam稳定性

IF 2 Q1 MATHEMATICS
S. Al-Issa, I. Kaddoura, N. J. Rifai
{"title":"基于分数积分边界条件的隐式二阶微分方程解的存在性和Hyers-Ulam稳定性","authors":"S. Al-Issa, I. Kaddoura, N. J. Rifai","doi":"10.22436/jmcs.031.01.02","DOIUrl":null,"url":null,"abstract":"In this paper, the existence and Ulam–Hyers stability of solutions for implicit second order fractional differential equations are investigated via fractional-orders integral boundary conditions. Our results are based on Krasnoselskii’s fixed point Theorem and Banach contraction principle. We provide examples at the end to clarify our acquired outcomes..","PeriodicalId":45497,"journal":{"name":"Journal of Mathematics and Computer Science-JMCS","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Hyers-Ulam stability of solutions to the implicit second-order differential equation via fractional integral boundary conditions\",\"authors\":\"S. Al-Issa, I. Kaddoura, N. J. Rifai\",\"doi\":\"10.22436/jmcs.031.01.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the existence and Ulam–Hyers stability of solutions for implicit second order fractional differential equations are investigated via fractional-orders integral boundary conditions. Our results are based on Krasnoselskii’s fixed point Theorem and Banach contraction principle. We provide examples at the end to clarify our acquired outcomes..\",\"PeriodicalId\":45497,\"journal\":{\"name\":\"Journal of Mathematics and Computer Science-JMCS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Computer Science-JMCS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jmcs.031.01.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Computer Science-JMCS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jmcs.031.01.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过分数阶积分边界条件研究了隐式二阶分数阶微分方程解的存在性和Ulam–Hyers稳定性。我们的结果基于Krasnoselskii的不动点定理和Banach收缩原理。我们在最后提供了一些例子来澄清我们获得的结果。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Hyers-Ulam stability of solutions to the implicit second-order differential equation via fractional integral boundary conditions
In this paper, the existence and Ulam–Hyers stability of solutions for implicit second order fractional differential equations are investigated via fractional-orders integral boundary conditions. Our results are based on Krasnoselskii’s fixed point Theorem and Banach contraction principle. We provide examples at the end to clarify our acquired outcomes..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
4.00%
发文量
77
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信