HCPV原型的室外性能测试

Q2 Energy
Merouan Belkasmi, K. Bouziane, M. Akherraz, Mensah K. Anaty, Mohamed El ouahabi, T. Sadiki, M. Faqir
{"title":"HCPV原型的室外性能测试","authors":"Merouan Belkasmi, K. Bouziane, M. Akherraz, Mensah K. Anaty, Mohamed El ouahabi, T. Sadiki, M. Faqir","doi":"10.15866/IRECON.V6I4.15939","DOIUrl":null,"url":null,"abstract":"Outdoor performance of a high concentrating photovoltaic (HCPV) system developed in this work has been investigated. In particular, the effect of three parameters namely wind speed, DNI and ambient temperature on the HCPV performance is explored. The tracking accuracy of the HCPV system is a crucial factor in the energy production related directly to the performance and closely depends on the acceptance angle of the HCPV module and the sun tracking control upon the abovementioned parameters. The acceptance angle of the HCPV module mounted on our HCPV system has been determined to be around 1.2°, deduced by studying the variation of the maximum pointing error from the solar source before the power drop. It is worth to mention that the HCPV system produces more than 94% of the excepted output power for a tracking error less than 1°. The tracking error in the range wind speed 6-8 m/s was found to reach an utmost deviation of 0.12° leading to 1% of power loss. Indeed, the outdoor tests of our HCPV prototype revealed variation of the maximum output power under different atmospheric conditions such as the ambient temperature and the direct normal irradiance (DNI). The maximum efficiency of the HCPV prototype has been determined around 23% according to a large range of DNI 0-850 W/m2. Taking into account the variation of the performance of our HCPV system versus the three parameters, The ASTM E2527 model has been implemented and its four coefficients have been determined to find the best accuracy of relationship between the three atmospheric parameters and maximum output power, simultaneously.","PeriodicalId":37583,"journal":{"name":"International Journal on Energy Conversion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outdoor Performance Tests of a HCPV Prototype\",\"authors\":\"Merouan Belkasmi, K. Bouziane, M. Akherraz, Mensah K. Anaty, Mohamed El ouahabi, T. Sadiki, M. Faqir\",\"doi\":\"10.15866/IRECON.V6I4.15939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outdoor performance of a high concentrating photovoltaic (HCPV) system developed in this work has been investigated. In particular, the effect of three parameters namely wind speed, DNI and ambient temperature on the HCPV performance is explored. The tracking accuracy of the HCPV system is a crucial factor in the energy production related directly to the performance and closely depends on the acceptance angle of the HCPV module and the sun tracking control upon the abovementioned parameters. The acceptance angle of the HCPV module mounted on our HCPV system has been determined to be around 1.2°, deduced by studying the variation of the maximum pointing error from the solar source before the power drop. It is worth to mention that the HCPV system produces more than 94% of the excepted output power for a tracking error less than 1°. The tracking error in the range wind speed 6-8 m/s was found to reach an utmost deviation of 0.12° leading to 1% of power loss. Indeed, the outdoor tests of our HCPV prototype revealed variation of the maximum output power under different atmospheric conditions such as the ambient temperature and the direct normal irradiance (DNI). The maximum efficiency of the HCPV prototype has been determined around 23% according to a large range of DNI 0-850 W/m2. Taking into account the variation of the performance of our HCPV system versus the three parameters, The ASTM E2527 model has been implemented and its four coefficients have been determined to find the best accuracy of relationship between the three atmospheric parameters and maximum output power, simultaneously.\",\"PeriodicalId\":37583,\"journal\":{\"name\":\"International Journal on Energy Conversion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Energy Conversion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IRECON.V6I4.15939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IRECON.V6I4.15939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

研究了本工作开发的高聚光光伏(HCPV)系统的室外性能。特别探讨了风速、DNI和环境温度三个参数对HCPV性能的影响。HCPV系统的跟踪精度是与性能直接相关的能量生产中的一个关键因素,并且与HCPV模块的接受角度和对上述参数的太阳跟踪控制密切相关。安装在我们的HCPV系统上的HCPV模块的接受角已被确定为约1.2°,这是通过研究功率下降前太阳能源的最大指向误差的变化而推导出来的。值得一提的是,HCPV系统在跟踪误差小于1°的情况下产生了超过94%的预期输出功率。在风速6-8 m/s的范围内,跟踪误差达到0.12°的最大偏差,导致1%的功率损失。事实上,我们的HCPV原型的室外测试揭示了在不同的大气条件下,如环境温度和直接法向辐照度(DNI),最大输出功率的变化。HCPV原型的最大效率已根据DNI 0-850W/m2的大范围确定为约23%。考虑到HCPV系统的性能随三个参数的变化,采用了ASTM E2527模型,并确定了其四个系数,以同时找到三个大气参数与最大输出功率之间关系的最佳精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outdoor Performance Tests of a HCPV Prototype
Outdoor performance of a high concentrating photovoltaic (HCPV) system developed in this work has been investigated. In particular, the effect of three parameters namely wind speed, DNI and ambient temperature on the HCPV performance is explored. The tracking accuracy of the HCPV system is a crucial factor in the energy production related directly to the performance and closely depends on the acceptance angle of the HCPV module and the sun tracking control upon the abovementioned parameters. The acceptance angle of the HCPV module mounted on our HCPV system has been determined to be around 1.2°, deduced by studying the variation of the maximum pointing error from the solar source before the power drop. It is worth to mention that the HCPV system produces more than 94% of the excepted output power for a tracking error less than 1°. The tracking error in the range wind speed 6-8 m/s was found to reach an utmost deviation of 0.12° leading to 1% of power loss. Indeed, the outdoor tests of our HCPV prototype revealed variation of the maximum output power under different atmospheric conditions such as the ambient temperature and the direct normal irradiance (DNI). The maximum efficiency of the HCPV prototype has been determined around 23% according to a large range of DNI 0-850 W/m2. Taking into account the variation of the performance of our HCPV system versus the three parameters, The ASTM E2527 model has been implemented and its four coefficients have been determined to find the best accuracy of relationship between the three atmospheric parameters and maximum output power, simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal on Energy Conversion
International Journal on Energy Conversion Energy-Nuclear Energy and Engineering
CiteScore
3.30
自引率
0.00%
发文量
8
期刊介绍: The International Journal on Energy Conversion (IRECON) is a peer-reviewed journal that publishes original theoretical and applied papers on all aspects regarding energy conversion. It is intended to be a cross disciplinary and internationally journal aimed at disseminating results of research on energy conversion. The topics to be covered include but are not limited to: generation of electrical energy for general industrial, commercial, public, and domestic consumption and electromechanical energy conversion for the use of electrical energy, renewable energy conversion, thermoelectricity, thermionic, photoelectric, thermal-photovoltaic, magneto-hydrodynamic, chemical, Brayton, Diesel, Rankine and combined cycles, and Stirling engines, hydrogen and other advanced fuel cells, all sources forms and storage and uses and all conversion phenomena of energy, static or dynamic conversion systems and processes and energy storage (for example solar, nuclear, fossil, geothermal, wind, hydro, and biomass, process heat, electrolysis, heating and cooling, electrical, mechanical and thermal storage units), energy efficiency and management, sustainable energy, heat pipes and capillary pumped loops, thermal management of spacecraft, space and terrestrial power systems, hydrogen production and storage, nuclear power, single and combined cycles, miniaturized energy conversion and power systems, fuel cells and advanced batteries, industrial, civil, automotive, airspace and naval applications on energy conversion. The Editorial policy is to maintain a reasonable balance between papers regarding different research areas so that the Journal will be useful to all interested scientific groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信