利用非对称T型多电平逆变器实现太阳能和电池系统的并网以降低THD提高转换效率

Q3 Energy
S. Gudey, S. Andavarapu
{"title":"利用非对称T型多电平逆变器实现太阳能和电池系统的并网以降低THD提高转换效率","authors":"S. Gudey, S. Andavarapu","doi":"10.22068/IJEEE.17.3.1857","DOIUrl":null,"url":null,"abstract":"A three-phase dual-port T-type asymmetrical multilevel inverter (ASMLI) using two sources, solar forming the high voltage level and the battery forming the low voltage level, is considered for grid interconnection. A vertical shifted SPWM is used for the ASMLI circuit. A transformerless system for grid interconnection is achieved for a 100-kW power range. A well-designed boost converter and a Buck/Boost converter is used on the front side of the inverter. Design of battery charge controller and its controlling logic are done and its SOC is found to be efficient during charging and discharging conditions. A closed-loop control using PQ theory is implemented for obtaining power balance at 0.7 modulation index. The THD of the current harmonics in the system is observed to be 0.01% and voltage harmonics is 0.029% which are well within the permissible limits of IEEE-519 standard. The power balance is found to be good between the inverter, load, and the grid during load disconnection for a period of 0.15s. A comparison of THD’s, voltage, current stresses on the switches, and conduction losses is also presented for a single-phase system with respect to a two-level inverter which shows improved efficiency and low THD. Hence this system can be proposed for use in grid interconnection with renewable energy sources.","PeriodicalId":39055,"journal":{"name":"Iranian Journal of Electrical and Electronic Engineering","volume":"17 1","pages":"1857-1857"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Grid Interconnection of Solar and Battery System Using an Asymmetrical T-Type Multilevel Inverter to improve Conversion Efficiency with Reduced THD\",\"authors\":\"S. Gudey, S. Andavarapu\",\"doi\":\"10.22068/IJEEE.17.3.1857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A three-phase dual-port T-type asymmetrical multilevel inverter (ASMLI) using two sources, solar forming the high voltage level and the battery forming the low voltage level, is considered for grid interconnection. A vertical shifted SPWM is used for the ASMLI circuit. A transformerless system for grid interconnection is achieved for a 100-kW power range. A well-designed boost converter and a Buck/Boost converter is used on the front side of the inverter. Design of battery charge controller and its controlling logic are done and its SOC is found to be efficient during charging and discharging conditions. A closed-loop control using PQ theory is implemented for obtaining power balance at 0.7 modulation index. The THD of the current harmonics in the system is observed to be 0.01% and voltage harmonics is 0.029% which are well within the permissible limits of IEEE-519 standard. The power balance is found to be good between the inverter, load, and the grid during load disconnection for a period of 0.15s. A comparison of THD’s, voltage, current stresses on the switches, and conduction losses is also presented for a single-phase system with respect to a two-level inverter which shows improved efficiency and low THD. Hence this system can be proposed for use in grid interconnection with renewable energy sources.\",\"PeriodicalId\":39055,\"journal\":{\"name\":\"Iranian Journal of Electrical and Electronic Engineering\",\"volume\":\"17 1\",\"pages\":\"1857-1857\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Electrical and Electronic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJEEE.17.3.1857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJEEE.17.3.1857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种三相双端口t型非对称多电平逆变器(ASMLI),该逆变器采用两种电源,太阳能形成高压电平,电池形成低压电平。ASMLI电路采用了垂直移位的SPWM。实现了100千瓦功率范围的无变压器并网系统。设计良好的升压变换器和Buck/ boost变换器用于逆变器的前端。对电池充电控制器及其控制逻辑进行了设计,在充放电条件下,其SOC是高效的。采用PQ理论实现了0.7调制指数下的功率平衡闭环控制。观察到系统中电流谐波的THD为0.01%,电压谐波的THD为0.029%,完全在IEEE-519标准的允许范围内。在0.15s的断载时间内,逆变器、负载和电网之间的功率平衡良好。本文还比较了单相系统的THD、开关上的电压、电流应力和导通损耗,并与双电平逆变器进行了比较,前者效率更高,THD更低。因此,该系统可用于可再生能源并网。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grid Interconnection of Solar and Battery System Using an Asymmetrical T-Type Multilevel Inverter to improve Conversion Efficiency with Reduced THD
A three-phase dual-port T-type asymmetrical multilevel inverter (ASMLI) using two sources, solar forming the high voltage level and the battery forming the low voltage level, is considered for grid interconnection. A vertical shifted SPWM is used for the ASMLI circuit. A transformerless system for grid interconnection is achieved for a 100-kW power range. A well-designed boost converter and a Buck/Boost converter is used on the front side of the inverter. Design of battery charge controller and its controlling logic are done and its SOC is found to be efficient during charging and discharging conditions. A closed-loop control using PQ theory is implemented for obtaining power balance at 0.7 modulation index. The THD of the current harmonics in the system is observed to be 0.01% and voltage harmonics is 0.029% which are well within the permissible limits of IEEE-519 standard. The power balance is found to be good between the inverter, load, and the grid during load disconnection for a period of 0.15s. A comparison of THD’s, voltage, current stresses on the switches, and conduction losses is also presented for a single-phase system with respect to a two-level inverter which shows improved efficiency and low THD. Hence this system can be proposed for use in grid interconnection with renewable energy sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Electrical and Electronic Engineering
Iranian Journal of Electrical and Electronic Engineering Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
13
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信