几乎Kenmotsu流形允许某些临界度量

IF 0.4 Q4 MATHEMATICS
D. Dey
{"title":"几乎Kenmotsu流形允许某些临界度量","authors":"D. Dey","doi":"10.1080/1726037X.2022.2142356","DOIUrl":null,"url":null,"abstract":"Abstract The object of this offering article is to introduce the notion of *- Miao-Tam critical equation on almost contact metric manifolds and it is studied on almost Kenmotsu manifolds with some nullity condition. It is proved that if the metric of a (2n + 1)-dimensional (k, µ) ! -almost Kenmotsu manifold (M, g) satisfies the *-Miao-Tam critical equation, then the manifold (M, g) is *-Ricci flat and locally isometric to a product space. Finally, the result is verified by an example.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"20 1","pages":"299 - 309"},"PeriodicalIF":0.4000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost Kenmotsu Manifolds Admitting Certain Critical Metric\",\"authors\":\"D. Dey\",\"doi\":\"10.1080/1726037X.2022.2142356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The object of this offering article is to introduce the notion of *- Miao-Tam critical equation on almost contact metric manifolds and it is studied on almost Kenmotsu manifolds with some nullity condition. It is proved that if the metric of a (2n + 1)-dimensional (k, µ) ! -almost Kenmotsu manifold (M, g) satisfies the *-Miao-Tam critical equation, then the manifold (M, g) is *-Ricci flat and locally isometric to a product space. Finally, the result is verified by an example.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"20 1\",\"pages\":\"299 - 309\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2022.2142356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2022.2142356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的目的是在几乎接触度量流形上引入*- Miao-Tam临界方程的概念,并研究了具有一定零条件的几乎Kenmotsu流形上的临界方程。证明了如果(2n + 1)维度规(k,µ)!-几乎Kenmotsu流形(M, g)满足*-Miao-Tam临界方程,则流形(M, g)是*-Ricci平坦且局部等距于积空间。最后,通过算例验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost Kenmotsu Manifolds Admitting Certain Critical Metric
Abstract The object of this offering article is to introduce the notion of *- Miao-Tam critical equation on almost contact metric manifolds and it is studied on almost Kenmotsu manifolds with some nullity condition. It is proved that if the metric of a (2n + 1)-dimensional (k, µ) ! -almost Kenmotsu manifold (M, g) satisfies the *-Miao-Tam critical equation, then the manifold (M, g) is *-Ricci flat and locally isometric to a product space. Finally, the result is verified by an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信