{"title":"几乎Kenmotsu流形允许某些临界度量","authors":"D. Dey","doi":"10.1080/1726037X.2022.2142356","DOIUrl":null,"url":null,"abstract":"Abstract The object of this offering article is to introduce the notion of *- Miao-Tam critical equation on almost contact metric manifolds and it is studied on almost Kenmotsu manifolds with some nullity condition. It is proved that if the metric of a (2n + 1)-dimensional (k, µ) ! -almost Kenmotsu manifold (M, g) satisfies the *-Miao-Tam critical equation, then the manifold (M, g) is *-Ricci flat and locally isometric to a product space. Finally, the result is verified by an example.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"20 1","pages":"299 - 309"},"PeriodicalIF":0.4000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost Kenmotsu Manifolds Admitting Certain Critical Metric\",\"authors\":\"D. Dey\",\"doi\":\"10.1080/1726037X.2022.2142356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The object of this offering article is to introduce the notion of *- Miao-Tam critical equation on almost contact metric manifolds and it is studied on almost Kenmotsu manifolds with some nullity condition. It is proved that if the metric of a (2n + 1)-dimensional (k, µ) ! -almost Kenmotsu manifold (M, g) satisfies the *-Miao-Tam critical equation, then the manifold (M, g) is *-Ricci flat and locally isometric to a product space. Finally, the result is verified by an example.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"20 1\",\"pages\":\"299 - 309\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2022.2142356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2022.2142356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Almost Kenmotsu Manifolds Admitting Certain Critical Metric
Abstract The object of this offering article is to introduce the notion of *- Miao-Tam critical equation on almost contact metric manifolds and it is studied on almost Kenmotsu manifolds with some nullity condition. It is proved that if the metric of a (2n + 1)-dimensional (k, µ) ! -almost Kenmotsu manifold (M, g) satisfies the *-Miao-Tam critical equation, then the manifold (M, g) is *-Ricci flat and locally isometric to a product space. Finally, the result is verified by an example.