{"title":"基于地理空间技术的蒂鲁奇拉帕利市城市热岛效应时空分析","authors":"Ajay Badugu , K.S. Arunab , Aneesh Mathew , P. Sarwesh","doi":"10.1016/j.geog.2022.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas, known as urban heat island effect. Thermal remote sensors measure the radiation emitted by ground objects, which can be used to estimate the land surface temperature and are beneficial for studying urban heat island effects. The present study investigates the spatial and temporal variations in the effects of urban heat island over Tiruchirappalli city in India during the summer and winter seasons. The study also identifies hot spots and cold spots within the study area. In this study, a significant land surface temperature difference was observed between the urban and rural areas, predominantly at night, indicating the presence of urban heat island at night. These diurnal land surface temperature fluctuations are also detected seasonally, with a relatively higher temperature intensity during the summer. The trend line analysis shows that the mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with <em>p</em> less than 0.01. By using the spatial autocorrelation method with the urban heat island index as the key parameter, hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the urban area. A hot spot with 95 and 90 percent confidence level was identified outside the urban area. This spike in temperature for a particular region in the rural area is due to industry and the associated built-up area. The study also identified cold spots with a 90 percent confidence level within the rural area. However, cold spots with a 95 and 99 percent confidence level were not identified within the study area.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spatial and temporal analysis of urban heat island effect over Tiruchirappalli city using geospatial techniques\",\"authors\":\"Ajay Badugu , K.S. Arunab , Aneesh Mathew , P. Sarwesh\",\"doi\":\"10.1016/j.geog.2022.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas, known as urban heat island effect. Thermal remote sensors measure the radiation emitted by ground objects, which can be used to estimate the land surface temperature and are beneficial for studying urban heat island effects. The present study investigates the spatial and temporal variations in the effects of urban heat island over Tiruchirappalli city in India during the summer and winter seasons. The study also identifies hot spots and cold spots within the study area. In this study, a significant land surface temperature difference was observed between the urban and rural areas, predominantly at night, indicating the presence of urban heat island at night. These diurnal land surface temperature fluctuations are also detected seasonally, with a relatively higher temperature intensity during the summer. The trend line analysis shows that the mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with <em>p</em> less than 0.01. By using the spatial autocorrelation method with the urban heat island index as the key parameter, hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the urban area. A hot spot with 95 and 90 percent confidence level was identified outside the urban area. This spike in temperature for a particular region in the rural area is due to industry and the associated built-up area. The study also identified cold spots with a 90 percent confidence level within the rural area. However, cold spots with a 95 and 99 percent confidence level were not identified within the study area.</p></div>\",\"PeriodicalId\":46398,\"journal\":{\"name\":\"Geodesy and Geodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Geodynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674984722000957\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984722000957","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Spatial and temporal analysis of urban heat island effect over Tiruchirappalli city using geospatial techniques
Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas, known as urban heat island effect. Thermal remote sensors measure the radiation emitted by ground objects, which can be used to estimate the land surface temperature and are beneficial for studying urban heat island effects. The present study investigates the spatial and temporal variations in the effects of urban heat island over Tiruchirappalli city in India during the summer and winter seasons. The study also identifies hot spots and cold spots within the study area. In this study, a significant land surface temperature difference was observed between the urban and rural areas, predominantly at night, indicating the presence of urban heat island at night. These diurnal land surface temperature fluctuations are also detected seasonally, with a relatively higher temperature intensity during the summer. The trend line analysis shows that the mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with p less than 0.01. By using the spatial autocorrelation method with the urban heat island index as the key parameter, hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the urban area. A hot spot with 95 and 90 percent confidence level was identified outside the urban area. This spike in temperature for a particular region in the rural area is due to industry and the associated built-up area. The study also identified cold spots with a 90 percent confidence level within the rural area. However, cold spots with a 95 and 99 percent confidence level were not identified within the study area.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.