使用多项式处理树的记忆相似性任务的贝叶斯建模

Q1 Mathematics
Behaviormetrika Pub Date : 2023-07-01 Epub Date: 2023-01-20 DOI:10.1007/s41237-023-00193-3
Michael D Lee, Craig E L Stark
{"title":"使用多项式处理树的记忆相似性任务的贝叶斯建模","authors":"Michael D Lee, Craig E L Stark","doi":"10.1007/s41237-023-00193-3","DOIUrl":null,"url":null,"abstract":"<p><p>The Mnemonic Similarity Task (MST: Stark et al., 2019) is a modified recognition memory task designed to place strong demand on pattern separation. The sensitivity and reliability of the MST make it an extremely valuable tool in clinical settings. We develop new cognitive models, based on the multinomial processing tree framework, for two versions of the MST. The models are implemented as generative probabilistic models and applied to behavioral data using Bayesian graphical modeling methods. We demonstrate how the combination of cognitive modeling and Bayesian methods allows for flexible and powerful inferences about performance on the MST. These demonstrations include latent-mixture extensions for identifying individual differences in decision strategies, and hierarchical extensions that measure fine-grained differences in the ability to detect lures. One key finding is that the availability of a \"similar\" response in the MST reduces individual differences in decision strategies and allows for more direct measurement of recognition memory.</p>","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":"1 1","pages":"517-539"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936565/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian Modeling of the Mnemonic Similarity Task Using Multinomial Processing Trees.\",\"authors\":\"Michael D Lee, Craig E L Stark\",\"doi\":\"10.1007/s41237-023-00193-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Mnemonic Similarity Task (MST: Stark et al., 2019) is a modified recognition memory task designed to place strong demand on pattern separation. The sensitivity and reliability of the MST make it an extremely valuable tool in clinical settings. We develop new cognitive models, based on the multinomial processing tree framework, for two versions of the MST. The models are implemented as generative probabilistic models and applied to behavioral data using Bayesian graphical modeling methods. We demonstrate how the combination of cognitive modeling and Bayesian methods allows for flexible and powerful inferences about performance on the MST. These demonstrations include latent-mixture extensions for identifying individual differences in decision strategies, and hierarchical extensions that measure fine-grained differences in the ability to detect lures. One key finding is that the availability of a \\\"similar\\\" response in the MST reduces individual differences in decision strategies and allows for more direct measurement of recognition memory.</p>\",\"PeriodicalId\":39640,\"journal\":{\"name\":\"Behaviormetrika\",\"volume\":\"1 1\",\"pages\":\"517-539\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936565/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behaviormetrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41237-023-00193-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behaviormetrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41237-023-00193-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

记忆相似性任务(MST:Stark et al.MST 的灵敏度和可靠性使其成为临床环境中极具价值的工具。我们基于多叉处理树框架,为两个版本的 MST 开发了新的认知模型。这些模型以生成概率模型的形式实现,并使用贝叶斯图形建模方法应用于行为数据。我们展示了认知建模与贝叶斯方法的结合如何能够对 MST 的表现进行灵活而强大的推断。这些演示包括用于识别决策策略个体差异的潜在混合物扩展,以及用于测量检测诱饵能力细粒度差异的分层扩展。一个关键的发现是,MST 中 "相似 "反应的可用性减少了决策策略的个体差异,并允许对识别记忆进行更直接的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Modeling of the Mnemonic Similarity Task Using Multinomial Processing Trees.

The Mnemonic Similarity Task (MST: Stark et al., 2019) is a modified recognition memory task designed to place strong demand on pattern separation. The sensitivity and reliability of the MST make it an extremely valuable tool in clinical settings. We develop new cognitive models, based on the multinomial processing tree framework, for two versions of the MST. The models are implemented as generative probabilistic models and applied to behavioral data using Bayesian graphical modeling methods. We demonstrate how the combination of cognitive modeling and Bayesian methods allows for flexible and powerful inferences about performance on the MST. These demonstrations include latent-mixture extensions for identifying individual differences in decision strategies, and hierarchical extensions that measure fine-grained differences in the ability to detect lures. One key finding is that the availability of a "similar" response in the MST reduces individual differences in decision strategies and allows for more direct measurement of recognition memory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behaviormetrika
Behaviormetrika Mathematics-Analysis
CiteScore
5.10
自引率
0.00%
发文量
33
期刊介绍: Behaviormetrika is issued twice a year to provide an international forum for new theoretical and empirical quantitative approaches in data science. When Behaviormetrika was launched in 1974, the journal advocated data science, as an interdisciplinary field that included the use of statistical methods to extract meaningful knowledge from data in its various forms: structured or unstructured. Behaviormetrika is the oldest journal addressing the topic of data science. The first editor-in-chief of Behaviormetrika, Dr. Chikio Hayashi, described data science in this way:“Data science is not only a synthetic concept to unify statistics, data analysis, and their related methods; it also comprises its results. Data science is intended to analyze and understand actual phenomena with ‘data.’ In other words, the aim of data science is to reveal the features or the hidden structure of complicated natural, human, and social phenomena using data from a different perspective from the established or traditional theory and method.”  Behaviormetrika is a fully refereed international journal, which publishes original research papers, notes, and review articles. Subject areas suitable for publication include but are not limited to the following methodologies and fields. Methodologies Data scienceMathematical statisticsSurvey methodologiesArtificial intelligence Information theoryMachine learning Knowledge discovery in databases (KDD)Graphical modelsComputer scienceAlgorithms FieldsMedicinePsychologyEducationEconomicsMarketingSocial scienceSociologyPolitical sciencePolicy scienceCognitive scienceBrain science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信