Li-hong Zhang, Ze-dong Yang, Guo-tao Wang, Mohammad M. Rashidi
{"title":"广义非线性k-Hessian系统k-凸正全径向解的分类与存在性","authors":"Li-hong Zhang, Ze-dong Yang, Guo-tao Wang, Mohammad M. Rashidi","doi":"10.1007/s11766-021-4363-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the following generalized nonlinear <i>k</i>-Hessian system </p><div><div><span>$$\\left\\{ {\\matrix{{{\\cal G}\\left( {S_k^{{1 \\over k}}(\\lambda ({D^2}{z_1}))} \\right)S_k^{{1 \\over k}}(\\lambda ({D^2}{z_1})) = \\varphi (\\left| x \\right|,{z_1},{z_2}),\\,\\,\\,x \\in {\\mathbb{R}^N},} \\cr {{\\cal G}\\left( {S_k^{{1 \\over k}}(\\lambda ({D^2}{z_2}))} \\right)S_k^{{1 \\over k}}(\\lambda ({D^2}{z_2})) = \\varphi (\\left| x \\right|,{z_1},{z_2}),\\,\\,\\,x \\in {\\mathbb{R}^N},} \\cr } \\,} \\right.$$</span></div></div><p> where <span>\\({\\cal G}\\)</span> is a nonlinear operator and <i>S</i>\n<sub><i>k</i></sub> (λ(<i>D</i>\n<sup>2</sup>\n<i>z</i>)) stands for the <i>k</i>-Hessian operator. We first are interested in the classification of positive entire <i>k</i>-convex radial solutions for the <i>k</i>-Hessian system if <i>φ</i>(∣<i>x</i>∣, <i>z</i>\n<sub>1</sub>, <i>z</i>\n<sub>2</sub>) = <i>b</i>(∣<i>x</i>∣)φ(<i>z</i>\n<sub>1</sub>, <i>z</i>\n<sub>2</sub>) and <i>ψ</i>(∣<i>x</i>∣, <i>z</i>\n<sub>1</sub>, z<sub>2</sub>) = <i>h</i>(∣<i>x</i>∣)<i>ψ</i>(<i>z</i>\n<sub>1</sub>). Moreover, with the help of the monotone iterative method, some new existence results on the positive entire <i>k</i>-convex radial solutions of the <i>k</i>-Hessian system with the special non-linearities <i>ψ,φ</i> are given, which improve and extend many previous works.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"36 4","pages":"564 - 582"},"PeriodicalIF":1.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11766-021-4363-8.pdf","citationCount":"2","resultStr":"{\"title\":\"Classification and existence of positive entire k-convex radial solutions for generalized nonlinear k-Hessian system\",\"authors\":\"Li-hong Zhang, Ze-dong Yang, Guo-tao Wang, Mohammad M. Rashidi\",\"doi\":\"10.1007/s11766-021-4363-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the following generalized nonlinear <i>k</i>-Hessian system </p><div><div><span>$$\\\\left\\\\{ {\\\\matrix{{{\\\\cal G}\\\\left( {S_k^{{1 \\\\over k}}(\\\\lambda ({D^2}{z_1}))} \\\\right)S_k^{{1 \\\\over k}}(\\\\lambda ({D^2}{z_1})) = \\\\varphi (\\\\left| x \\\\right|,{z_1},{z_2}),\\\\,\\\\,\\\\,x \\\\in {\\\\mathbb{R}^N},} \\\\cr {{\\\\cal G}\\\\left( {S_k^{{1 \\\\over k}}(\\\\lambda ({D^2}{z_2}))} \\\\right)S_k^{{1 \\\\over k}}(\\\\lambda ({D^2}{z_2})) = \\\\varphi (\\\\left| x \\\\right|,{z_1},{z_2}),\\\\,\\\\,\\\\,x \\\\in {\\\\mathbb{R}^N},} \\\\cr } \\\\,} \\\\right.$$</span></div></div><p> where <span>\\\\({\\\\cal G}\\\\)</span> is a nonlinear operator and <i>S</i>\\n<sub><i>k</i></sub> (λ(<i>D</i>\\n<sup>2</sup>\\n<i>z</i>)) stands for the <i>k</i>-Hessian operator. We first are interested in the classification of positive entire <i>k</i>-convex radial solutions for the <i>k</i>-Hessian system if <i>φ</i>(∣<i>x</i>∣, <i>z</i>\\n<sub>1</sub>, <i>z</i>\\n<sub>2</sub>) = <i>b</i>(∣<i>x</i>∣)φ(<i>z</i>\\n<sub>1</sub>, <i>z</i>\\n<sub>2</sub>) and <i>ψ</i>(∣<i>x</i>∣, <i>z</i>\\n<sub>1</sub>, z<sub>2</sub>) = <i>h</i>(∣<i>x</i>∣)<i>ψ</i>(<i>z</i>\\n<sub>1</sub>). Moreover, with the help of the monotone iterative method, some new existence results on the positive entire <i>k</i>-convex radial solutions of the <i>k</i>-Hessian system with the special non-linearities <i>ψ,φ</i> are given, which improve and extend many previous works.</p></div>\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":\"36 4\",\"pages\":\"564 - 582\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11766-021-4363-8.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-021-4363-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-021-4363-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
where \({\cal G}\) is a nonlinear operator and Sk (λ(D2z)) stands for the k-Hessian operator. We first are interested in the classification of positive entire k-convex radial solutions for the k-Hessian system if φ(∣x∣, z1, z2) = b(∣x∣)φ(z1, z2) and ψ(∣x∣, z1, z2) = h(∣x∣)ψ(z1). Moreover, with the help of the monotone iterative method, some new existence results on the positive entire k-convex radial solutions of the k-Hessian system with the special non-linearities ψ,φ are given, which improve and extend many previous works.
期刊介绍:
Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects.
The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry.
Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.