上半空间的Hardy–Littlewood–Sobolev不等式

Q4 Mathematics
V. P. Anoop, S. Parui
{"title":"上半空间的Hardy–Littlewood–Sobolev不等式","authors":"V. P. Anoop, S. Parui","doi":"10.5802/ambp.401","DOIUrl":null,"url":null,"abstract":"We define an extension operator and study (L , L) boundedness of Hardy–Littlewood–Sobolev inequality and weighted Hardy–Littlewood–Sobolev inequality on upper Half space for the Dunkl transform.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardy–Littlewood–Sobolev Inequality for Upper Half Space\",\"authors\":\"V. P. Anoop, S. Parui\",\"doi\":\"10.5802/ambp.401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define an extension operator and study (L , L) boundedness of Hardy–Littlewood–Sobolev inequality and weighted Hardy–Littlewood–Sobolev inequality on upper Half space for the Dunkl transform.\",\"PeriodicalId\":52347,\"journal\":{\"name\":\"Annales Mathematiques Blaise Pascal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques Blaise Pascal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ambp.401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了一个可拓算子,研究了Dunkl变换上半空间上Hardy–Littlewood–Sobolev不等式和加权Hardy–Littlewood–Sobolev不等式的(L,L)有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardy–Littlewood–Sobolev Inequality for Upper Half Space
We define an extension operator and study (L , L) boundedness of Hardy–Littlewood–Sobolev inequality and weighted Hardy–Littlewood–Sobolev inequality on upper Half space for the Dunkl transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematiques Blaise Pascal
Annales Mathematiques Blaise Pascal Mathematics-Algebra and Number Theory
CiteScore
0.50
自引率
0.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信