M. Lavanya, P. Rao, V. Ramachandra Murthy, S. Selvaraj
{"title":"基于RSM技术的海洋环境中铝合金结垢参数研究","authors":"M. Lavanya, P. Rao, V. Ramachandra Murthy, S. Selvaraj","doi":"10.1080/17515831.2019.1690406","DOIUrl":null,"url":null,"abstract":"ABSTRACT Fouling is known to be a prominent industrial problem which is greatly affected by parameters like temperature, time and flowrate. The aim of this work was to simulate the fouling process in AA 6061 by developing a model through Minitab 16 and evaluate the models. Box Behnken design of Response surface methodology was applied for modelling and optimization of fouling propensity in artificial sea water. A response surface model was obtained and Analysis of Variance was performed to test the significance of the model. Fouling propensity was found in terms of weight gain. An experimental rig consisting of a recirculating loop mimicking the industrial conditions of fouling was used in the study. SEM analysis shows uneven deposits on the metal surface. Sharp, irregular deposits pressed deep into the metal was observed. The finding of this work would enable us to evaluate the individual and interactive effects of the parameters.","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17515831.2019.1690406","citationCount":"5","resultStr":"{\"title\":\"Parametric study of aluminium alloy fouling in marine environment using RSM technique\",\"authors\":\"M. Lavanya, P. Rao, V. Ramachandra Murthy, S. Selvaraj\",\"doi\":\"10.1080/17515831.2019.1690406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Fouling is known to be a prominent industrial problem which is greatly affected by parameters like temperature, time and flowrate. The aim of this work was to simulate the fouling process in AA 6061 by developing a model through Minitab 16 and evaluate the models. Box Behnken design of Response surface methodology was applied for modelling and optimization of fouling propensity in artificial sea water. A response surface model was obtained and Analysis of Variance was performed to test the significance of the model. Fouling propensity was found in terms of weight gain. An experimental rig consisting of a recirculating loop mimicking the industrial conditions of fouling was used in the study. SEM analysis shows uneven deposits on the metal surface. Sharp, irregular deposits pressed deep into the metal was observed. The finding of this work would enable us to evaluate the individual and interactive effects of the parameters.\",\"PeriodicalId\":23331,\"journal\":{\"name\":\"Tribology - Materials, Surfaces & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17515831.2019.1690406\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology - Materials, Surfaces & Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17515831.2019.1690406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2019.1690406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Parametric study of aluminium alloy fouling in marine environment using RSM technique
ABSTRACT Fouling is known to be a prominent industrial problem which is greatly affected by parameters like temperature, time and flowrate. The aim of this work was to simulate the fouling process in AA 6061 by developing a model through Minitab 16 and evaluate the models. Box Behnken design of Response surface methodology was applied for modelling and optimization of fouling propensity in artificial sea water. A response surface model was obtained and Analysis of Variance was performed to test the significance of the model. Fouling propensity was found in terms of weight gain. An experimental rig consisting of a recirculating loop mimicking the industrial conditions of fouling was used in the study. SEM analysis shows uneven deposits on the metal surface. Sharp, irregular deposits pressed deep into the metal was observed. The finding of this work would enable us to evaluate the individual and interactive effects of the parameters.