一阶非强迫脉冲中立型时滞微分方程的振动性

S. Santra, A. Tripathy
{"title":"一阶非强迫脉冲中立型时滞微分方程的振动性","authors":"S. Santra, A. Tripathy","doi":"10.12732/CAA.V22I4.5","DOIUrl":null,"url":null,"abstract":"In this work, we study the oscillatory behavior of solutions of a class of first order impulsive neutral delay differential equations of the form (y(t)− p(t)y(t− τ)) + q(t)G(y(t− σ)) = 0, t 6= tk, t ≥ t0 ∆y(tk) = y(t + k )− y(tk) = bky(tk), k = 1, 2, 3, · · · ∆y(tk − τ) = y(t + k − τ)− y(tk − τ) = bky(tk − τ), k = 1, 2, 3, · · · for all p(t) with |p(t)| < ∞. AMS Subject Classification: 34K","PeriodicalId":92887,"journal":{"name":"Communications in applied analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"OSCILLATION OF UNFORCED IMPULSIVE NEUTRAL DELAY DIFFERENTIAL EQUATIONS OF FIRST ORDER\",\"authors\":\"S. Santra, A. Tripathy\",\"doi\":\"10.12732/CAA.V22I4.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the oscillatory behavior of solutions of a class of first order impulsive neutral delay differential equations of the form (y(t)− p(t)y(t− τ)) + q(t)G(y(t− σ)) = 0, t 6= tk, t ≥ t0 ∆y(tk) = y(t + k )− y(tk) = bky(tk), k = 1, 2, 3, · · · ∆y(tk − τ) = y(t + k − τ)− y(tk − τ) = bky(tk − τ), k = 1, 2, 3, · · · for all p(t) with |p(t)| < ∞. AMS Subject Classification: 34K\",\"PeriodicalId\":92887,\"journal\":{\"name\":\"Communications in applied analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in applied analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/CAA.V22I4.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in applied analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/CAA.V22I4.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们研究解的振荡行为一类一阶脉冲中立型时滞微分方程的形式(y (t)−p (t) y (t−τ))+ q (t) G (y (t−σ))= 0,t 6 = tk, t≥t0∆y (tk) = y (t + k)−y (tk) = bky (tk), k = 1, 2, 3,···∆y (tk−τ)= y (t + k−τ)−y (tk−τ)= bky (tk−τ),k = 1, 2, 3,···p (t)与p (t) | | <∞。AMS科目分类:34K
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OSCILLATION OF UNFORCED IMPULSIVE NEUTRAL DELAY DIFFERENTIAL EQUATIONS OF FIRST ORDER
In this work, we study the oscillatory behavior of solutions of a class of first order impulsive neutral delay differential equations of the form (y(t)− p(t)y(t− τ)) + q(t)G(y(t− σ)) = 0, t 6= tk, t ≥ t0 ∆y(tk) = y(t + k )− y(tk) = bky(tk), k = 1, 2, 3, · · · ∆y(tk − τ) = y(t + k − τ)− y(tk − τ) = bky(tk − τ), k = 1, 2, 3, · · · for all p(t) with |p(t)| < ∞. AMS Subject Classification: 34K
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信