{"title":"利用持久同源性对不同非晶态透射电子显微镜图像进行分类","authors":"Fumihiko Uesugi, M. Ishii","doi":"10.1093/jmicro/dfac008","DOIUrl":null,"url":null,"abstract":"Abstract It is difficult to discriminate the amorphous state using a transmission electron microscope (TEM). We discriminated different amorphous states on TEM images using persistent homology, which is a mathematical analysis technique that employs the homology concept and focuses on ‘holes’. The structural models of the different amorphous states, that is, amorphous and liquid states, were created using classical molecular dynamic simulation. TEM images in several defocus conditions were simulated by the multi-slice method using the created amorphous and liquid states, and their persistent diagrams were calculated. Finally, logistic regression and support vector classification machine learning algorithms were applied for discrimination. Consequently, we found that the amorphous and liquid phases can be discriminated by more than 85%. Because the contrast of TEM images depends on sample thickness, focus, lens aberration, etc., radial distribution function cannot be classified; however, the persistent homology can discriminate different amorphous states in a wide focus range.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification for transmission electron microscope images from different amorphous states using persistent homology\",\"authors\":\"Fumihiko Uesugi, M. Ishii\",\"doi\":\"10.1093/jmicro/dfac008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is difficult to discriminate the amorphous state using a transmission electron microscope (TEM). We discriminated different amorphous states on TEM images using persistent homology, which is a mathematical analysis technique that employs the homology concept and focuses on ‘holes’. The structural models of the different amorphous states, that is, amorphous and liquid states, were created using classical molecular dynamic simulation. TEM images in several defocus conditions were simulated by the multi-slice method using the created amorphous and liquid states, and their persistent diagrams were calculated. Finally, logistic regression and support vector classification machine learning algorithms were applied for discrimination. Consequently, we found that the amorphous and liquid phases can be discriminated by more than 85%. Because the contrast of TEM images depends on sample thickness, focus, lens aberration, etc., radial distribution function cannot be classified; however, the persistent homology can discriminate different amorphous states in a wide focus range.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfac008\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jmicro/dfac008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Classification for transmission electron microscope images from different amorphous states using persistent homology
Abstract It is difficult to discriminate the amorphous state using a transmission electron microscope (TEM). We discriminated different amorphous states on TEM images using persistent homology, which is a mathematical analysis technique that employs the homology concept and focuses on ‘holes’. The structural models of the different amorphous states, that is, amorphous and liquid states, were created using classical molecular dynamic simulation. TEM images in several defocus conditions were simulated by the multi-slice method using the created amorphous and liquid states, and their persistent diagrams were calculated. Finally, logistic regression and support vector classification machine learning algorithms were applied for discrimination. Consequently, we found that the amorphous and liquid phases can be discriminated by more than 85%. Because the contrast of TEM images depends on sample thickness, focus, lens aberration, etc., radial distribution function cannot be classified; however, the persistent homology can discriminate different amorphous states in a wide focus range.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.