Bloch振荡悖论的数学探索

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED
L. Barletti
{"title":"Bloch振荡悖论的数学探索","authors":"L. Barletti","doi":"10.1080/23324309.2020.1828470","DOIUrl":null,"url":null,"abstract":"Abstract We mathematically describe the apparently paradoxical phenomenon that the electric current in a semiconductor can flow because of collisions, and not despite them. A model of charge transport in a one-dimensional semiconductor crystal is considered, where each electron follows the periodic Hamiltonian trajectories, determined by the semiconductor band structure, and undergoes non-elastic collisions with a phonon bath. Starting from the detailed phase-space model, a closed system of ODEs is obtained for averaged quantities. Such a simplified model is nevertheless capable of describing transient Bloch oscillations, their damping and the consequent onset of a steady current flow, which is in good agreement with the available experimental data.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"50 1","pages":"328 - 346"},"PeriodicalIF":0.7000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23324309.2020.1828470","citationCount":"0","resultStr":"{\"title\":\"A Mathematical Walk into the Paradox of Bloch Oscillations\",\"authors\":\"L. Barletti\",\"doi\":\"10.1080/23324309.2020.1828470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We mathematically describe the apparently paradoxical phenomenon that the electric current in a semiconductor can flow because of collisions, and not despite them. A model of charge transport in a one-dimensional semiconductor crystal is considered, where each electron follows the periodic Hamiltonian trajectories, determined by the semiconductor band structure, and undergoes non-elastic collisions with a phonon bath. Starting from the detailed phase-space model, a closed system of ODEs is obtained for averaged quantities. Such a simplified model is nevertheless capable of describing transient Bloch oscillations, their damping and the consequent onset of a steady current flow, which is in good agreement with the available experimental data.\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"50 1\",\"pages\":\"328 - 346\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23324309.2020.1828470\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2020.1828470\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2020.1828470","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们从数学上描述了一个明显矛盾的现象,即半导体中的电流可以因为碰撞而流动,而不是尽管碰撞。考虑了一维半导体晶体中的电荷传输模型,其中每个电子遵循由半导体能带结构确定的周期性哈密顿轨道,并与声子浴发生非弹性碰撞。从详细的相空间模型开始,对于平均量,得到了一个闭合的常微分方程系统。然而,这样的简化模型能够描述瞬态布洛赫振荡、它们的阻尼以及由此产生的稳定电流的开始,这与可用的实验数据非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mathematical Walk into the Paradox of Bloch Oscillations
Abstract We mathematically describe the apparently paradoxical phenomenon that the electric current in a semiconductor can flow because of collisions, and not despite them. A model of charge transport in a one-dimensional semiconductor crystal is considered, where each electron follows the periodic Hamiltonian trajectories, determined by the semiconductor band structure, and undergoes non-elastic collisions with a phonon bath. Starting from the detailed phase-space model, a closed system of ODEs is obtained for averaged quantities. Such a simplified model is nevertheless capable of describing transient Bloch oscillations, their damping and the consequent onset of a steady current flow, which is in good agreement with the available experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信