坡莫合金箔中磁通门磁噪声的贡献者,包括潜在的新铜合金区

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
D. Miles, R. Dvorský, K. Greene, C. Hansen, B. Narod, M. Webb
{"title":"坡莫合金箔中磁通门磁噪声的贡献者,包括潜在的新铜合金区","authors":"D. Miles, R. Dvorský, K. Greene, C. Hansen, B. Narod, M. Webb","doi":"10.5194/gi-2021-30","DOIUrl":null,"url":null,"abstract":"Abstract. Fluxgate magnetometers provide sensitive and stable measurements of the static and low frequency vector magnetic field. Fluxgates form a magnetic field measurement by periodically saturating a ferromagnetic core and the intrinsic magnetic noise of this material can determine the noise floor of the instrument. We present the results of an empirical experiment to understand the physical parameters that influence the intrinsic magnetic noise of fluxgate cores. We compare two permalloy alloys – the historical standard 6 % molybdenum alloy and a new 28 % copper alloy. We examine the influence of geometry using the historical standard 1” diameter spiral wound ring-core and a new stacked washer racetrack design. We evaluate the influence of material thickness by comparing 100 µm and 50 µm foils. Finally, we investigate heat treatments in terms of temperature and ramp rate and their role in both grain size and magnetic noise. The results of these experiments suggest that thinner foils, potentially comprising the copper alloy, manufactured into continuous racetrack geometry washers may provide excellent performance in fluxgate sensors.\n","PeriodicalId":48742,"journal":{"name":"Geoscientific Instrumentation Methods and Data Systems","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Contributors to Fluxgate Magnetic Noise in Permalloy Foils Including a Potential New Copper Alloy Regime\",\"authors\":\"D. Miles, R. Dvorský, K. Greene, C. Hansen, B. Narod, M. Webb\",\"doi\":\"10.5194/gi-2021-30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Fluxgate magnetometers provide sensitive and stable measurements of the static and low frequency vector magnetic field. Fluxgates form a magnetic field measurement by periodically saturating a ferromagnetic core and the intrinsic magnetic noise of this material can determine the noise floor of the instrument. We present the results of an empirical experiment to understand the physical parameters that influence the intrinsic magnetic noise of fluxgate cores. We compare two permalloy alloys – the historical standard 6 % molybdenum alloy and a new 28 % copper alloy. We examine the influence of geometry using the historical standard 1” diameter spiral wound ring-core and a new stacked washer racetrack design. We evaluate the influence of material thickness by comparing 100 µm and 50 µm foils. Finally, we investigate heat treatments in terms of temperature and ramp rate and their role in both grain size and magnetic noise. The results of these experiments suggest that thinner foils, potentially comprising the copper alloy, manufactured into continuous racetrack geometry washers may provide excellent performance in fluxgate sensors.\\n\",\"PeriodicalId\":48742,\"journal\":{\"name\":\"Geoscientific Instrumentation Methods and Data Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscientific Instrumentation Methods and Data Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/gi-2021-30\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Instrumentation Methods and Data Systems","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gi-2021-30","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

摘要磁通门磁强计提供静态和低频矢量磁场的敏感和稳定的测量。磁通门通过周期性地使铁磁磁芯饱和形成磁场测量,这种材料的固有磁噪声可以决定仪器的本底噪声。我们提出了一个经验实验的结果,以了解影响磁通门铁心本征磁噪声的物理参数。我们比较了两种坡莫合金——历史标准的6%钼合金和一种新的28%铜合金。我们使用历史标准的1”直径螺旋缠绕环芯和新的堆叠垫圈赛道设计来检查几何形状的影响。我们通过比较100µm和50µm箔来评估材料厚度的影响。最后,我们研究了热处理的温度和斜坡速率及其对晶粒尺寸和磁噪声的影响。这些实验的结果表明,较薄的箔,可能包含铜合金,制造成连续赛道几何垫圈,可能在磁通门传感器中提供优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contributors to Fluxgate Magnetic Noise in Permalloy Foils Including a Potential New Copper Alloy Regime
Abstract. Fluxgate magnetometers provide sensitive and stable measurements of the static and low frequency vector magnetic field. Fluxgates form a magnetic field measurement by periodically saturating a ferromagnetic core and the intrinsic magnetic noise of this material can determine the noise floor of the instrument. We present the results of an empirical experiment to understand the physical parameters that influence the intrinsic magnetic noise of fluxgate cores. We compare two permalloy alloys – the historical standard 6 % molybdenum alloy and a new 28 % copper alloy. We examine the influence of geometry using the historical standard 1” diameter spiral wound ring-core and a new stacked washer racetrack design. We evaluate the influence of material thickness by comparing 100 µm and 50 µm foils. Finally, we investigate heat treatments in terms of temperature and ramp rate and their role in both grain size and magnetic noise. The results of these experiments suggest that thinner foils, potentially comprising the copper alloy, manufactured into continuous racetrack geometry washers may provide excellent performance in fluxgate sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoscientific Instrumentation Methods and Data Systems
Geoscientific Instrumentation Methods and Data Systems GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
3.70
自引率
0.00%
发文量
23
审稿时长
37 weeks
期刊介绍: Geoscientific Instrumentation, Methods and Data Systems (GI) is an open-access interdisciplinary electronic journal for swift publication of original articles and short communications in the area of geoscientific instruments. It covers three main areas: (i) atmospheric and geospace sciences, (ii) earth science, and (iii) ocean science. A unique feature of the journal is the emphasis on synergy between science and technology that facilitates advances in GI. These advances include but are not limited to the following: concepts, design, and description of instrumentation and data systems; retrieval techniques of scientific products from measurements; calibration and data quality assessment; uncertainty in measurements; newly developed and planned research platforms and community instrumentation capabilities; major national and international field campaigns and observational research programs; new observational strategies to address societal needs in areas such as monitoring climate change and preventing natural disasters; networking of instruments for enhancing high temporal and spatial resolution of observations. GI has an innovative two-stage publication process involving the scientific discussion forum Geoscientific Instrumentation, Methods and Data Systems Discussions (GID), which has been designed to do the following: foster scientific discussion; maximize the effectiveness and transparency of scientific quality assurance; enable rapid publication; make scientific publications freely accessible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信