用马尔可夫切换动态模型检测匈牙利领先和重合指标的商业周期,以提高经济增长的可持续性

Q1 Decision Sciences
Albert Molnár, Laszlo Vasa, Ágnes Csiszárik-Kocsir
{"title":"用马尔可夫切换动态模型检测匈牙利领先和重合指标的商业周期,以提高经济增长的可持续性","authors":"Albert Molnár, Laszlo Vasa, Ágnes Csiszárik-Kocsir","doi":"10.31181/dmame060120032023m","DOIUrl":null,"url":null,"abstract":"This paper applies the hidden Markov switching dynamic regression (MSDR) model to estimate transition probabilities of the Hungarian GDP between recessionary and expansionary periods. The transition probabilities are then compared to the OECD Hungarian binary business cycle indicator to assess the predictive power of the model. The paper proposes a linear model with a mean and a homoscedastic component. The level of symmetricity between the GDP and business cycles is explained by the panel data variables (Unemployment rate, IPI index, Inflation, BUX year-on-year change, and 10-3 Year sovereign bond yield spreads). It is assumed in this paper that by extending the model to encompass an exogenous variable listed in the panel data, essentially making the model bivariate, the maximum likelihood function would capture the business cycle more accurately. The results show that by plugging the unemployment rate as the exogenous variable in the regression, our model’s accuracy is 70%.","PeriodicalId":32695,"journal":{"name":"Decision Making Applications in Management and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting business cycles for Hungarian leading and coincident indicators with a Markov switching dynamic model to improve sustainability in economic growth\",\"authors\":\"Albert Molnár, Laszlo Vasa, Ágnes Csiszárik-Kocsir\",\"doi\":\"10.31181/dmame060120032023m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper applies the hidden Markov switching dynamic regression (MSDR) model to estimate transition probabilities of the Hungarian GDP between recessionary and expansionary periods. The transition probabilities are then compared to the OECD Hungarian binary business cycle indicator to assess the predictive power of the model. The paper proposes a linear model with a mean and a homoscedastic component. The level of symmetricity between the GDP and business cycles is explained by the panel data variables (Unemployment rate, IPI index, Inflation, BUX year-on-year change, and 10-3 Year sovereign bond yield spreads). It is assumed in this paper that by extending the model to encompass an exogenous variable listed in the panel data, essentially making the model bivariate, the maximum likelihood function would capture the business cycle more accurately. The results show that by plugging the unemployment rate as the exogenous variable in the regression, our model’s accuracy is 70%.\",\"PeriodicalId\":32695,\"journal\":{\"name\":\"Decision Making Applications in Management and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Making Applications in Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31181/dmame060120032023m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Making Applications in Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31181/dmame060120032023m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

摘要

本文应用隐马尔可夫切换动态回归(MSDR)模型来估计匈牙利GDP在衰退期和扩张期之间的转移概率。然后将转换概率与经合组织匈牙利二元商业周期指标进行比较,以评估该模型的预测能力。本文提出了一个具有均值和同方差分量的线性模型。GDP和商业周期之间的对称性水平由面板数据变量(失业率、IPI指数、通货膨胀、BUX同比变化和10-3年主权债券收益率差)来解释。本文假设,通过扩展模型以包含面板数据中列出的外生变量,本质上使模型成为双变量,最大似然函数将更准确地捕捉商业周期。结果表明,通过在回归中插入失业率作为外生变量,我们的模型的准确率为70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting business cycles for Hungarian leading and coincident indicators with a Markov switching dynamic model to improve sustainability in economic growth
This paper applies the hidden Markov switching dynamic regression (MSDR) model to estimate transition probabilities of the Hungarian GDP between recessionary and expansionary periods. The transition probabilities are then compared to the OECD Hungarian binary business cycle indicator to assess the predictive power of the model. The paper proposes a linear model with a mean and a homoscedastic component. The level of symmetricity between the GDP and business cycles is explained by the panel data variables (Unemployment rate, IPI index, Inflation, BUX year-on-year change, and 10-3 Year sovereign bond yield spreads). It is assumed in this paper that by extending the model to encompass an exogenous variable listed in the panel data, essentially making the model bivariate, the maximum likelihood function would capture the business cycle more accurately. The results show that by plugging the unemployment rate as the exogenous variable in the regression, our model’s accuracy is 70%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Making Applications in Management and Engineering
Decision Making Applications in Management and Engineering Decision Sciences-General Decision Sciences
CiteScore
14.40
自引率
0.00%
发文量
35
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信