Sijie Zhuang, W. Lv, Jingxian Zhang, Z. Long, Chang Sun, Xuefeng Lu, Shuangfei Wang
{"title":"具有高透气性、高湿强度、防霉抗菌性能的液晶玻璃衬纸","authors":"Sijie Zhuang, W. Lv, Jingxian Zhang, Z. Long, Chang Sun, Xuefeng Lu, Shuangfei Wang","doi":"10.35812/cellulosechemtechnol.2022.56.91","DOIUrl":null,"url":null,"abstract":"In this paper, we report a method for the preparation of liner paper applied on liquid crystal glass. It was obtained by wet forming of hardwood fiber and a laboratory-made hydrophilic dispersible polyester staple fiber in a certain proportion. The laboratory-made hydrophilic dispersible polyester staple fiber was obtained by co-deposition of gallic acid and ethylenediamine on PET fiber. Some additives were used in the papermaking process, including wet strength agent polyamide epichlorohydrin (PAE), anti-mildew and antibacterial agent polyhexamethylene biguanide (PHMB), and pH adjuster boric acid (H3BO3). Results showed that the liner paper has high air permeability (~35.99 μm.(Pa∙s)-1), good wet strength (~0.720 kN.m-1) and excellent anti-mildew and antibacterial properties. Interestingly, the pore size of the modified PET fiber paper increased between 23% and 29% within the same pore size range compared with PET fiber paper. This provides a theoretical basis for the relationship between paper pore size and air permeability.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LINER PAPER WITH HIGH AIR PERMEABILITY, HIGH WET STRENGTH, ANTI-MILDEW AND ANTIBACTERIAL PROPERTIES FOR LIQUID CRYSTAL GLASS\",\"authors\":\"Sijie Zhuang, W. Lv, Jingxian Zhang, Z. Long, Chang Sun, Xuefeng Lu, Shuangfei Wang\",\"doi\":\"10.35812/cellulosechemtechnol.2022.56.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report a method for the preparation of liner paper applied on liquid crystal glass. It was obtained by wet forming of hardwood fiber and a laboratory-made hydrophilic dispersible polyester staple fiber in a certain proportion. The laboratory-made hydrophilic dispersible polyester staple fiber was obtained by co-deposition of gallic acid and ethylenediamine on PET fiber. Some additives were used in the papermaking process, including wet strength agent polyamide epichlorohydrin (PAE), anti-mildew and antibacterial agent polyhexamethylene biguanide (PHMB), and pH adjuster boric acid (H3BO3). Results showed that the liner paper has high air permeability (~35.99 μm.(Pa∙s)-1), good wet strength (~0.720 kN.m-1) and excellent anti-mildew and antibacterial properties. Interestingly, the pore size of the modified PET fiber paper increased between 23% and 29% within the same pore size range compared with PET fiber paper. This provides a theoretical basis for the relationship between paper pore size and air permeability.\",\"PeriodicalId\":10130,\"journal\":{\"name\":\"Cellulose Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.35812/cellulosechemtechnol.2022.56.91\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2022.56.91","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
LINER PAPER WITH HIGH AIR PERMEABILITY, HIGH WET STRENGTH, ANTI-MILDEW AND ANTIBACTERIAL PROPERTIES FOR LIQUID CRYSTAL GLASS
In this paper, we report a method for the preparation of liner paper applied on liquid crystal glass. It was obtained by wet forming of hardwood fiber and a laboratory-made hydrophilic dispersible polyester staple fiber in a certain proportion. The laboratory-made hydrophilic dispersible polyester staple fiber was obtained by co-deposition of gallic acid and ethylenediamine on PET fiber. Some additives were used in the papermaking process, including wet strength agent polyamide epichlorohydrin (PAE), anti-mildew and antibacterial agent polyhexamethylene biguanide (PHMB), and pH adjuster boric acid (H3BO3). Results showed that the liner paper has high air permeability (~35.99 μm.(Pa∙s)-1), good wet strength (~0.720 kN.m-1) and excellent anti-mildew and antibacterial properties. Interestingly, the pore size of the modified PET fiber paper increased between 23% and 29% within the same pore size range compared with PET fiber paper. This provides a theoretical basis for the relationship between paper pore size and air permeability.
期刊介绍:
Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry.
Topics include:
• studies of structure and properties
• biological and industrial development
• analytical methods
• chemical and microbiological modifications
• interactions with other materials