支持向量回归模型:对某些数据约简方法的新改进及应用

IF 1.1 Q3 STATISTICS & PROBABILITY
Moustafa Salem, Mohamed G. Khalil
{"title":"支持向量回归模型:对某些数据约简方法的新改进及应用","authors":"Moustafa Salem, Mohamed G. Khalil","doi":"10.18187/pjsor.v18i2.4049","DOIUrl":null,"url":null,"abstract":"Support Vector Regression (SVR) formulates is an optimization problem to learn a regression function that maps from input predictor variables to output observed response values. The SVR is useful because it balances model complexity and prediction error, and it has good performance for handling high-dimensional data. In this paper, we use the SVR model to improve the principal component analysis and the factor analysis methods. Simulation experiments are performed to assessment the new method. Some useful applications to real data sets are presented for comparing the competitive SVR models. It is noted that with increasing sample size, the -SVR type under the principal component analysis is the best model. However, under the small sample sizes the SVR type under the factor analysis provided adequate results.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Support Vector Regression Model: A new Improvement for some Data Reduction Methods with Application\",\"authors\":\"Moustafa Salem, Mohamed G. Khalil\",\"doi\":\"10.18187/pjsor.v18i2.4049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Regression (SVR) formulates is an optimization problem to learn a regression function that maps from input predictor variables to output observed response values. The SVR is useful because it balances model complexity and prediction error, and it has good performance for handling high-dimensional data. In this paper, we use the SVR model to improve the principal component analysis and the factor analysis methods. Simulation experiments are performed to assessment the new method. Some useful applications to real data sets are presented for comparing the competitive SVR models. It is noted that with increasing sample size, the -SVR type under the principal component analysis is the best model. However, under the small sample sizes the SVR type under the factor analysis provided adequate results.\",\"PeriodicalId\":19973,\"journal\":{\"name\":\"Pakistan Journal of Statistics and Operation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Statistics and Operation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v18i2.4049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Statistics and Operation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v18i2.4049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

支持向量回归(SVR)公式化是一个优化问题,用于学习从输入预测变量映射到输出观测响应值的回归函数。SVR非常有用,因为它平衡了模型复杂性和预测误差,并且在处理高维数据时具有良好的性能。在本文中,我们使用SVR模型来改进主成分分析和因子分析方法。通过仿真实验对新方法进行了评价。给出了一些实际数据集的有用应用,用于比较竞争性SVR模型。值得注意的是,随着样本量的增加,主成分分析下的-SVR型是最佳模型。然而,在小样本量下,因子分析下的SVR类型提供了足够的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Support Vector Regression Model: A new Improvement for some Data Reduction Methods with Application
Support Vector Regression (SVR) formulates is an optimization problem to learn a regression function that maps from input predictor variables to output observed response values. The SVR is useful because it balances model complexity and prediction error, and it has good performance for handling high-dimensional data. In this paper, we use the SVR model to improve the principal component analysis and the factor analysis methods. Simulation experiments are performed to assessment the new method. Some useful applications to real data sets are presented for comparing the competitive SVR models. It is noted that with increasing sample size, the -SVR type under the principal component analysis is the best model. However, under the small sample sizes the SVR type under the factor analysis provided adequate results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
26.70%
发文量
53
期刊介绍: Pakistan Journal of Statistics and Operation Research. PJSOR is a peer-reviewed journal, published four times a year. PJSOR publishes refereed research articles and studies that describe the latest research and developments in the area of statistics, operation research and actuarial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信