线性波的浓度接近锥

IF 1.3 2区 数学 Q1 MATHEMATICS
R. Cote, C. Laurent
{"title":"线性波的浓度接近锥","authors":"R. Cote, C. Laurent","doi":"10.4171/rmi/1399","DOIUrl":null,"url":null,"abstract":"We are concerned with solutions to the linear wave equation. We give an asymptotic formula for large time, valid in the energy space, via an operator related to the Radon transform. This allows us to show that the energy is concentrated near the light cone. This allows to derive further expressions the exterior energy (outside a shifted light cone). We in particular generalize the formulas of [CKS14] obtained in the radial setting. In odd dimension, we study the discrepancy of the exterior energy regarding initial energy, and prove in the general case the results of [KLLS15] (which were restricted to radial data).","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Concentration close to the cone for linear waves\",\"authors\":\"R. Cote, C. Laurent\",\"doi\":\"10.4171/rmi/1399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with solutions to the linear wave equation. We give an asymptotic formula for large time, valid in the energy space, via an operator related to the Radon transform. This allows us to show that the energy is concentrated near the light cone. This allows to derive further expressions the exterior energy (outside a shifted light cone). We in particular generalize the formulas of [CKS14] obtained in the radial setting. In odd dimension, we study the discrepancy of the exterior energy regarding initial energy, and prove in the general case the results of [KLLS15] (which were restricted to radial data).\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1399\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1399","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

我们关心的是线性波动方程的解。通过与Radon变换相关的算子,给出了在能量空间有效的大时间渐近公式。这使我们能够证明能量集中在光锥附近。这允许推导出外部能量的进一步表达式(在移位光锥之外)。我们特别推广了在径向环境下得到的[CKS14]公式。在奇维,我们研究了外部能量与初始能量的差异,并在一般情况下证明了[KLLS15]的结果(仅限于径向数据)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concentration close to the cone for linear waves
We are concerned with solutions to the linear wave equation. We give an asymptotic formula for large time, valid in the energy space, via an operator related to the Radon transform. This allows us to show that the energy is concentrated near the light cone. This allows to derive further expressions the exterior energy (outside a shifted light cone). We in particular generalize the formulas of [CKS14] obtained in the radial setting. In odd dimension, we study the discrepancy of the exterior energy regarding initial energy, and prove in the general case the results of [KLLS15] (which were restricted to radial data).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信