{"title":"点过程的工具变量方法:基于反卷积的广义Wald估计","authors":"Zhichao Jiang, Shizhe Chen, Peng Ding","doi":"10.1093/biomet/asad005","DOIUrl":null,"url":null,"abstract":"\n Point processes are probabilistic tools for modelling event data. While there exists a fast-growing literature studying the relationships between point processes, it remains unexplored how such relationships connect to causal effects. In the presence of unmeasured confounders, parameters from point process models do not necessarily have causal interpretations. We propose an instrumental variable method for causal inference with point process treatment and outcome. We define causal quantities based on potential outcomes and establish nonparametric identification results with a binary instrumental variable. We extend the traditional Wald estimation to deal with point process treatment and outcome, showing that it should be performed after a Fourier transform of the intention-to-treat effects on the treatment and outcome and thus takes the form of deconvolution. We term this generalized Wald estimation and propose an estimation strategy based on well-established deconvolution methods.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An instrumental variable method for point processes: generalized Wald estimation based on deconvolution\",\"authors\":\"Zhichao Jiang, Shizhe Chen, Peng Ding\",\"doi\":\"10.1093/biomet/asad005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Point processes are probabilistic tools for modelling event data. While there exists a fast-growing literature studying the relationships between point processes, it remains unexplored how such relationships connect to causal effects. In the presence of unmeasured confounders, parameters from point process models do not necessarily have causal interpretations. We propose an instrumental variable method for causal inference with point process treatment and outcome. We define causal quantities based on potential outcomes and establish nonparametric identification results with a binary instrumental variable. We extend the traditional Wald estimation to deal with point process treatment and outcome, showing that it should be performed after a Fourier transform of the intention-to-treat effects on the treatment and outcome and thus takes the form of deconvolution. We term this generalized Wald estimation and propose an estimation strategy based on well-established deconvolution methods.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad005\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asad005","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
An instrumental variable method for point processes: generalized Wald estimation based on deconvolution
Point processes are probabilistic tools for modelling event data. While there exists a fast-growing literature studying the relationships between point processes, it remains unexplored how such relationships connect to causal effects. In the presence of unmeasured confounders, parameters from point process models do not necessarily have causal interpretations. We propose an instrumental variable method for causal inference with point process treatment and outcome. We define causal quantities based on potential outcomes and establish nonparametric identification results with a binary instrumental variable. We extend the traditional Wald estimation to deal with point process treatment and outcome, showing that it should be performed after a Fourier transform of the intention-to-treat effects on the treatment and outcome and thus takes the form of deconvolution. We term this generalized Wald estimation and propose an estimation strategy based on well-established deconvolution methods.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.