{"title":"高维双曲面上旋转的有界余集","authors":"A. Das, Joanna Furno, A. Haynes","doi":"10.2140/moscow.2021.10.111","DOIUrl":null,"url":null,"abstract":"In this paper we give a simple, explicit construction of polytopal bounded remainder sets of all possible volumes, for any irrational rotation on the $d$ dimensional adelic torus $\\mathbb{A}^d/\\mathbb{Q}^d$. Our construction involves ideas from dynamical systems and harmonic analysis on the adeles, as well as a geometric argument that reduces the existence argument to the case of an irrational rotation on the torus $\\mathbb{R}^d/\\mathbb{Q}^d$.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded remainder sets for rotations on higher-dimensional adelic tori\",\"authors\":\"A. Das, Joanna Furno, A. Haynes\",\"doi\":\"10.2140/moscow.2021.10.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give a simple, explicit construction of polytopal bounded remainder sets of all possible volumes, for any irrational rotation on the $d$ dimensional adelic torus $\\\\mathbb{A}^d/\\\\mathbb{Q}^d$. Our construction involves ideas from dynamical systems and harmonic analysis on the adeles, as well as a geometric argument that reduces the existence argument to the case of an irrational rotation on the torus $\\\\mathbb{R}^d/\\\\mathbb{Q}^d$.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2021.10.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2021.10.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Bounded remainder sets for rotations on higher-dimensional adelic tori
In this paper we give a simple, explicit construction of polytopal bounded remainder sets of all possible volumes, for any irrational rotation on the $d$ dimensional adelic torus $\mathbb{A}^d/\mathbb{Q}^d$. Our construction involves ideas from dynamical systems and harmonic analysis on the adeles, as well as a geometric argument that reduces the existence argument to the case of an irrational rotation on the torus $\mathbb{R}^d/\mathbb{Q}^d$.