高维双曲面上旋转的有界余集

Q4 Mathematics
A. Das, Joanna Furno, A. Haynes
{"title":"高维双曲面上旋转的有界余集","authors":"A. Das, Joanna Furno, A. Haynes","doi":"10.2140/moscow.2021.10.111","DOIUrl":null,"url":null,"abstract":"In this paper we give a simple, explicit construction of polytopal bounded remainder sets of all possible volumes, for any irrational rotation on the $d$ dimensional adelic torus $\\mathbb{A}^d/\\mathbb{Q}^d$. Our construction involves ideas from dynamical systems and harmonic analysis on the adeles, as well as a geometric argument that reduces the existence argument to the case of an irrational rotation on the torus $\\mathbb{R}^d/\\mathbb{Q}^d$.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded remainder sets for rotations on higher-dimensional adelic tori\",\"authors\":\"A. Das, Joanna Furno, A. Haynes\",\"doi\":\"10.2140/moscow.2021.10.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give a simple, explicit construction of polytopal bounded remainder sets of all possible volumes, for any irrational rotation on the $d$ dimensional adelic torus $\\\\mathbb{A}^d/\\\\mathbb{Q}^d$. Our construction involves ideas from dynamical systems and harmonic analysis on the adeles, as well as a geometric argument that reduces the existence argument to the case of an irrational rotation on the torus $\\\\mathbb{R}^d/\\\\mathbb{Q}^d$.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2021.10.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2021.10.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了$d$维阿氏环面$\mathbb{a}^d/\mathbb{Q}^d$上任意无理旋转的所有可能体积的多面体有界余集的一个简单显式构造。我们的构造涉及动力学系统的思想和adeles上的调和分析,以及一个几何论点,该论点将存在性论点简化为环面$\mathbb{R}^d/\mathbb{Q}^d$上的无理旋转的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded remainder sets for rotations on higher-dimensional adelic tori
In this paper we give a simple, explicit construction of polytopal bounded remainder sets of all possible volumes, for any irrational rotation on the $d$ dimensional adelic torus $\mathbb{A}^d/\mathbb{Q}^d$. Our construction involves ideas from dynamical systems and harmonic analysis on the adeles, as well as a geometric argument that reduces the existence argument to the case of an irrational rotation on the torus $\mathbb{R}^d/\mathbb{Q}^d$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信