K. Mohan kumar, Venkatesh Naik, S. Waddar, N. Santhosh, Vijayananda Kaup, H. V. Harish
{"title":"芒果籽壳/环氧树脂低承载结构复合材料的力学和吸水性能","authors":"K. Mohan kumar, Venkatesh Naik, S. Waddar, N. Santhosh, Vijayananda Kaup, H. V. Harish","doi":"10.1155/2023/9976409","DOIUrl":null,"url":null,"abstract":"The present work deals with the characterization of mango seed shell fiber reinforced epoxy composites by using hand layup method by varying the volume composition of the mango seed shell from 0 vol. % to 60 vol. % (M-0 to M-60). The physical density test, tensile test, flexural test, and water absorption test were conducted as per the American Society for Testing and Materials (ASTM) standards. Results revealed that the tensile strength of M-20 (20 vol. %) is 43% more than a neat epoxy, while the flexural strength of M-50 (50 vol. %) is greater than 10.85% more than a neat epoxy. The water absorption test was conducted by immersing the samples in distilled water at room temperature, and the weight of the specimens was measured and recorded at every 24-hour time interval. For all composite samples, saturation in water absorption and thickness swelling were observed after 432 hours of water immersion. The moisture absorption increases with the inclusion of reinforcements as compared to the neat epoxy samples. However, for the M-50 composite, the water absorption decreases due to the uniform mixing and stronger bonding between the matrix and the reinforcements. The scanning electron microscope (SEM) images of the composite specimens also depicted the particulate fiber distribution and the presence of micro-voids in the epoxy matrix.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanical and Water Absorption Characterization of Mango Seed Shell/Epoxy Composite for Low Load Carrying Structures\",\"authors\":\"K. Mohan kumar, Venkatesh Naik, S. Waddar, N. Santhosh, Vijayananda Kaup, H. V. Harish\",\"doi\":\"10.1155/2023/9976409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work deals with the characterization of mango seed shell fiber reinforced epoxy composites by using hand layup method by varying the volume composition of the mango seed shell from 0 vol. % to 60 vol. % (M-0 to M-60). The physical density test, tensile test, flexural test, and water absorption test were conducted as per the American Society for Testing and Materials (ASTM) standards. Results revealed that the tensile strength of M-20 (20 vol. %) is 43% more than a neat epoxy, while the flexural strength of M-50 (50 vol. %) is greater than 10.85% more than a neat epoxy. The water absorption test was conducted by immersing the samples in distilled water at room temperature, and the weight of the specimens was measured and recorded at every 24-hour time interval. For all composite samples, saturation in water absorption and thickness swelling were observed after 432 hours of water immersion. The moisture absorption increases with the inclusion of reinforcements as compared to the neat epoxy samples. However, for the M-50 composite, the water absorption decreases due to the uniform mixing and stronger bonding between the matrix and the reinforcements. The scanning electron microscope (SEM) images of the composite specimens also depicted the particulate fiber distribution and the presence of micro-voids in the epoxy matrix.\",\"PeriodicalId\":14283,\"journal\":{\"name\":\"International Journal of Polymer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9976409\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/9976409","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Mechanical and Water Absorption Characterization of Mango Seed Shell/Epoxy Composite for Low Load Carrying Structures
The present work deals with the characterization of mango seed shell fiber reinforced epoxy composites by using hand layup method by varying the volume composition of the mango seed shell from 0 vol. % to 60 vol. % (M-0 to M-60). The physical density test, tensile test, flexural test, and water absorption test were conducted as per the American Society for Testing and Materials (ASTM) standards. Results revealed that the tensile strength of M-20 (20 vol. %) is 43% more than a neat epoxy, while the flexural strength of M-50 (50 vol. %) is greater than 10.85% more than a neat epoxy. The water absorption test was conducted by immersing the samples in distilled water at room temperature, and the weight of the specimens was measured and recorded at every 24-hour time interval. For all composite samples, saturation in water absorption and thickness swelling were observed after 432 hours of water immersion. The moisture absorption increases with the inclusion of reinforcements as compared to the neat epoxy samples. However, for the M-50 composite, the water absorption decreases due to the uniform mixing and stronger bonding between the matrix and the reinforcements. The scanning electron microscope (SEM) images of the composite specimens also depicted the particulate fiber distribution and the presence of micro-voids in the epoxy matrix.
期刊介绍:
The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.