布洛芬和酮洛芬电化学定量的最新进展——综述。

IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Bianca-Maria Ţuchiu, Raluca-Ioana Stefan-van Staden, Jacobus Koos Frederick van Staden
{"title":"布洛芬和酮洛芬电化学定量的最新进展——综述。","authors":"Bianca-Maria Ţuchiu, Raluca-Ioana Stefan-van Staden, Jacobus Koos Frederick van Staden","doi":"10.1080/10408347.2022.2050348","DOIUrl":null,"url":null,"abstract":"<p><p>Non-steroidal anti-inflammatory drugs are intensively manufactured, used, and regulated. However, these compounds incur toxic effects on gastrointestinal, cardiovascular, and renal systems when administered in high doses for extended periods. Additionally, once these drugs reach the ecosystems through various pathways, they become environmental contaminants and raise ecological concerns. Traditional detection methods proposed for non-steroidal anti-inflammatory drugs detection encompass certain limitations. In this context, the need for simple, cost-effective, sensitive, and selective detection methods that could improve the quality of analysis led the attention of the scientific community toward electrochemical sensors. The lowest limit of detection of ibuprofen (33.33 × 10<sup>-12 </sup>μmol L<sup>-1</sup>) was recorded for a sensor based on ibuprofen specific aptamer bound with nitrogen-doped graphene quantum dots and gold nanoparticles nanocomposite modified glassy carbon electrode using differential pulse voltammetry, while the lowest limit of detection reported for ketoprofen was 0.11 μmol L<sup>-1</sup> when differential pulse voltammetry was used. This review focuses on the construction, analytical performances, and applicability of electrochemical sensors developed for ibuprofen and ketoprofen determination. This work covers 24 articles published between 2016 and 2022.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent Trends in Ibuprofen and Ketoprofen Electrochemical Quantification - A Review.\",\"authors\":\"Bianca-Maria Ţuchiu, Raluca-Ioana Stefan-van Staden, Jacobus Koos Frederick van Staden\",\"doi\":\"10.1080/10408347.2022.2050348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-steroidal anti-inflammatory drugs are intensively manufactured, used, and regulated. However, these compounds incur toxic effects on gastrointestinal, cardiovascular, and renal systems when administered in high doses for extended periods. Additionally, once these drugs reach the ecosystems through various pathways, they become environmental contaminants and raise ecological concerns. Traditional detection methods proposed for non-steroidal anti-inflammatory drugs detection encompass certain limitations. In this context, the need for simple, cost-effective, sensitive, and selective detection methods that could improve the quality of analysis led the attention of the scientific community toward electrochemical sensors. The lowest limit of detection of ibuprofen (33.33 × 10<sup>-12 </sup>μmol L<sup>-1</sup>) was recorded for a sensor based on ibuprofen specific aptamer bound with nitrogen-doped graphene quantum dots and gold nanoparticles nanocomposite modified glassy carbon electrode using differential pulse voltammetry, while the lowest limit of detection reported for ketoprofen was 0.11 μmol L<sup>-1</sup> when differential pulse voltammetry was used. This review focuses on the construction, analytical performances, and applicability of electrochemical sensors developed for ibuprofen and ketoprofen determination. This work covers 24 articles published between 2016 and 2022.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2022.2050348\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2022.2050348","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 2

摘要

非甾体抗炎药被集中生产、使用和监管。然而,当长时间高剂量给药时,这些化合物会对胃肠道、心血管和肾脏系统产生毒性作用。此外,一旦这些药物通过各种途径进入生态系统,它们就会成为环境污染物,并引发生态问题。传统的非甾体抗炎药检测方法存在一定的局限性。在这种情况下,对能够提高分析质量的简单、成本效益高、敏感和选择性检测方法的需求导致了科学界对电化学传感器的关注。布洛芬的最低检测限(33.33 × 10-12 μmol L-1),而酮洛芬的最低检测限为0.11 μmol L-1。本文综述了用于布洛芬和酮洛芬测定的电化学传感器的结构、分析性能和适用性。这部作品涵盖了2016年至2022年间发表的24篇文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Trends in Ibuprofen and Ketoprofen Electrochemical Quantification - A Review.

Non-steroidal anti-inflammatory drugs are intensively manufactured, used, and regulated. However, these compounds incur toxic effects on gastrointestinal, cardiovascular, and renal systems when administered in high doses for extended periods. Additionally, once these drugs reach the ecosystems through various pathways, they become environmental contaminants and raise ecological concerns. Traditional detection methods proposed for non-steroidal anti-inflammatory drugs detection encompass certain limitations. In this context, the need for simple, cost-effective, sensitive, and selective detection methods that could improve the quality of analysis led the attention of the scientific community toward electrochemical sensors. The lowest limit of detection of ibuprofen (33.33 × 10-12 μmol L-1) was recorded for a sensor based on ibuprofen specific aptamer bound with nitrogen-doped graphene quantum dots and gold nanoparticles nanocomposite modified glassy carbon electrode using differential pulse voltammetry, while the lowest limit of detection reported for ketoprofen was 0.11 μmol L-1 when differential pulse voltammetry was used. This review focuses on the construction, analytical performances, and applicability of electrochemical sensors developed for ibuprofen and ketoprofen determination. This work covers 24 articles published between 2016 and 2022.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
4.00%
发文量
137
审稿时长
6 months
期刊介绍: Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area. This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following: · chemical analysis; · instrumentation; · chemometrics; · analytical biochemistry; · medicinal analysis; · forensics; · environmental sciences; · applied physics; · and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信