一种与内容无关的域滥用检测方法

Q4 Engineering
Yang Fan, Xiang Zhengrong, Tang Shou-lian
{"title":"一种与内容无关的域滥用检测方法","authors":"Yang Fan, Xiang Zhengrong, Tang Shou-lian","doi":"10.1504/ijwmc.2020.10027287","DOIUrl":null,"url":null,"abstract":"This paper proposes a series of language-independent domain name abuse detection features, including domain name string features, domain name registration features, domain name resolution features and domain name service features, and trains six pattern recognition algorithms in the corresponding feature space. To validate the effectiveness of extracted features and learning algorithms, a practical data set is constructed, and the performance of related features and learning algorithms are compared and analysed. The experimental results show that the multi-scale features extracted in this paper have good recognition ability. The Random Forest algorithm achieves the best comprehensive effect when only 8-dimensional fusion features are used, where F1-Measure and ROC Area reach 0.965 and 0.978, respectively.","PeriodicalId":53709,"journal":{"name":"International Journal of Wireless and Mobile Computing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A content independent domain abuse detection method\",\"authors\":\"Yang Fan, Xiang Zhengrong, Tang Shou-lian\",\"doi\":\"10.1504/ijwmc.2020.10027287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a series of language-independent domain name abuse detection features, including domain name string features, domain name registration features, domain name resolution features and domain name service features, and trains six pattern recognition algorithms in the corresponding feature space. To validate the effectiveness of extracted features and learning algorithms, a practical data set is constructed, and the performance of related features and learning algorithms are compared and analysed. The experimental results show that the multi-scale features extracted in this paper have good recognition ability. The Random Forest algorithm achieves the best comprehensive effect when only 8-dimensional fusion features are used, where F1-Measure and ROC Area reach 0.965 and 0.978, respectively.\",\"PeriodicalId\":53709,\"journal\":{\"name\":\"International Journal of Wireless and Mobile Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Wireless and Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijwmc.2020.10027287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wireless and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijwmc.2020.10027287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一系列与语言无关的域名滥用检测特征,包括域名串特征、域名注册特征、域名解析特征和域名服务特征,并在相应的特征空间中训练了六种模式识别算法。为了验证提取的特征和学习算法的有效性,构建了一个实用的数据集,并对相关特征和学习方法的性能进行了比较和分析。实验结果表明,本文提取的多尺度特征具有良好的识别能力。当仅使用8维融合特征时,随机森林算法获得了最佳的综合效果,其中F1 Measure和ROC Area分别达到0.965和0.978。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A content independent domain abuse detection method
This paper proposes a series of language-independent domain name abuse detection features, including domain name string features, domain name registration features, domain name resolution features and domain name service features, and trains six pattern recognition algorithms in the corresponding feature space. To validate the effectiveness of extracted features and learning algorithms, a practical data set is constructed, and the performance of related features and learning algorithms are compared and analysed. The experimental results show that the multi-scale features extracted in this paper have good recognition ability. The Random Forest algorithm achieves the best comprehensive effect when only 8-dimensional fusion features are used, where F1-Measure and ROC Area reach 0.965 and 0.978, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Wireless and Mobile Computing
International Journal of Wireless and Mobile Computing Computer Science-Computer Science (all)
CiteScore
0.80
自引率
0.00%
发文量
76
期刊介绍: The explosive growth of wide-area cellular systems and local area wireless networks which promise to make integrated networks a reality, and the development of "wearable" computers and the emergence of "pervasive" computing paradigm, are just the beginning of "The Wireless and Mobile Revolution". The realisation of wireless connectivity is bringing fundamental changes to telecommunications and computing and profoundly affects the way we compute, communicate, and interact. It provides fully distributed and ubiquitous mobile computing and communications, thus bringing an end to the tyranny of geography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信