{"title":"球囊素——土壤有机质中一种有趣的蛋白质","authors":"V. Vlček, M. Pohanka","doi":"10.17221/29/2019-SWR","DOIUrl":null,"url":null,"abstract":"The negative effects of the current agricultural practices include erosion, acidification, loss of soil organic matter (dehumification), loss of soil structure, soil contamination by risky elements, reduction of biological diversity and land use for non-agricultural purposes. All these effects are a huge risk to the further development of soil quality from an agronomic point of view and its resilience to projected climate change. Organic matter has a crucial role in it. Relatively significant correlations with the quality or the health of soil parameters and the soil organic matter or some fraction of the soil organic matter have been found. In particular, Ctot, Cox, humic and fulvic acids, the C/N ratio, and glomalin. Our work was focused on glomalin, a glycoprotein produced by the hyphae and spores of arbuscular mycorrhizal fungi (AMF), which we classify as Glomeromycota. Arbuscular mycorrhiza, and its molecular pathways, is not a well understood phenomenon. It appears that many proteins are involved in the arbuscular mycorrhiza from which glomalin is probably one of the most significant. This protein is also responsible for the unique chemical and physical properties of soils and has an ecological and economical relevance in this sense and it is a real product of the mycorrhiza. Glomalin is very resistant to destruction (recalcitrant) and difficult to dissolve in water. Its extraction requires specific conditions: high temperature (121°C) and a citrate buffer with a neutral or alkaline pH. Due to these properties, glomalin (or its fractions) are very stable compounds that protect the soil aggregate surface. In this review, the actual literature has been researched and the importance of glomalin is discussed.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":"15 1","pages":"67-74"},"PeriodicalIF":1.7000,"publicationDate":"2020-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17221/29/2019-SWR","citationCount":"27","resultStr":"{\"title\":\"Glomalin – an interesting protein part of the soil organic matter\",\"authors\":\"V. Vlček, M. Pohanka\",\"doi\":\"10.17221/29/2019-SWR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The negative effects of the current agricultural practices include erosion, acidification, loss of soil organic matter (dehumification), loss of soil structure, soil contamination by risky elements, reduction of biological diversity and land use for non-agricultural purposes. All these effects are a huge risk to the further development of soil quality from an agronomic point of view and its resilience to projected climate change. Organic matter has a crucial role in it. Relatively significant correlations with the quality or the health of soil parameters and the soil organic matter or some fraction of the soil organic matter have been found. In particular, Ctot, Cox, humic and fulvic acids, the C/N ratio, and glomalin. Our work was focused on glomalin, a glycoprotein produced by the hyphae and spores of arbuscular mycorrhizal fungi (AMF), which we classify as Glomeromycota. Arbuscular mycorrhiza, and its molecular pathways, is not a well understood phenomenon. It appears that many proteins are involved in the arbuscular mycorrhiza from which glomalin is probably one of the most significant. This protein is also responsible for the unique chemical and physical properties of soils and has an ecological and economical relevance in this sense and it is a real product of the mycorrhiza. Glomalin is very resistant to destruction (recalcitrant) and difficult to dissolve in water. Its extraction requires specific conditions: high temperature (121°C) and a citrate buffer with a neutral or alkaline pH. Due to these properties, glomalin (or its fractions) are very stable compounds that protect the soil aggregate surface. In this review, the actual literature has been researched and the importance of glomalin is discussed.\",\"PeriodicalId\":48982,\"journal\":{\"name\":\"Soil and Water Research\",\"volume\":\"15 1\",\"pages\":\"67-74\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.17221/29/2019-SWR\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil and Water Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/29/2019-SWR\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Water Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/29/2019-SWR","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Glomalin – an interesting protein part of the soil organic matter
The negative effects of the current agricultural practices include erosion, acidification, loss of soil organic matter (dehumification), loss of soil structure, soil contamination by risky elements, reduction of biological diversity and land use for non-agricultural purposes. All these effects are a huge risk to the further development of soil quality from an agronomic point of view and its resilience to projected climate change. Organic matter has a crucial role in it. Relatively significant correlations with the quality or the health of soil parameters and the soil organic matter or some fraction of the soil organic matter have been found. In particular, Ctot, Cox, humic and fulvic acids, the C/N ratio, and glomalin. Our work was focused on glomalin, a glycoprotein produced by the hyphae and spores of arbuscular mycorrhizal fungi (AMF), which we classify as Glomeromycota. Arbuscular mycorrhiza, and its molecular pathways, is not a well understood phenomenon. It appears that many proteins are involved in the arbuscular mycorrhiza from which glomalin is probably one of the most significant. This protein is also responsible for the unique chemical and physical properties of soils and has an ecological and economical relevance in this sense and it is a real product of the mycorrhiza. Glomalin is very resistant to destruction (recalcitrant) and difficult to dissolve in water. Its extraction requires specific conditions: high temperature (121°C) and a citrate buffer with a neutral or alkaline pH. Due to these properties, glomalin (or its fractions) are very stable compounds that protect the soil aggregate surface. In this review, the actual literature has been researched and the importance of glomalin is discussed.
期刊介绍:
An international peer-reviewed journal published under the auspices of the Czech Academy of Agricultural Sciences and financed by the Ministry of Agriculture of the Czech Republic. Published since 2006.
Thematic: original papers, short communications and critical reviews from all fields of science and engineering related to soil and water and their interactions in natural and man-modified landscapes, with a particular focus on agricultural land use. The fields encompassed include, but are not limited to, the basic and applied soil science, soil hydrology, irrigation and drainage of lands, hydrology, management and revitalisation of small water streams and small water reservoirs, including fishponds, soil erosion research and control, drought and flood control, wetland restoration and protection, surface and ground water protection in therms of their quantity and quality.