{"title":"木材干燥研究与开发进展","authors":"D. Elustondo, N. Matan, T. Langrish, S. Pang","doi":"10.1080/07373937.2023.2205530","DOIUrl":null,"url":null,"abstract":"Abstract Wood drying is a key operation of wood processing to ensure that the wood retains its physical integrity and stability in remanufacturing and in use. However, in industrial drying various drying defects still occur, which include uneven moisture content between and within boards, board distortion, residual drying stresses that may induce internal and external checking, and wood collapse. This paper presents a review on advances in wood drying research and development, which lay foundation for better understanding of the drying process, mechanisms of drying defect occurrence and affecting factors. In particular, recent progresses in understanding drying stress development and wood collapse formation during drying are presented in more details. Based on these advances, inter-linkage and interactions are analyzed among wood physical and microstructural properties, moisture movement in wood during drying, stress development and reversal, and wood collapse formation. Following this, drying schedule improvements and novel drying technologies are presented with targets to mitigate the drying defects, reduce energy consumption and increase the productivity. Application of artificial intelligence for modeling and control of the timber drying is also briefly described. Finally, recommendations are made for future studies and practical implementation.","PeriodicalId":11374,"journal":{"name":"Drying Technology","volume":"41 1","pages":"890 - 914"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Advances in wood drying research and development\",\"authors\":\"D. Elustondo, N. Matan, T. Langrish, S. Pang\",\"doi\":\"10.1080/07373937.2023.2205530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Wood drying is a key operation of wood processing to ensure that the wood retains its physical integrity and stability in remanufacturing and in use. However, in industrial drying various drying defects still occur, which include uneven moisture content between and within boards, board distortion, residual drying stresses that may induce internal and external checking, and wood collapse. This paper presents a review on advances in wood drying research and development, which lay foundation for better understanding of the drying process, mechanisms of drying defect occurrence and affecting factors. In particular, recent progresses in understanding drying stress development and wood collapse formation during drying are presented in more details. Based on these advances, inter-linkage and interactions are analyzed among wood physical and microstructural properties, moisture movement in wood during drying, stress development and reversal, and wood collapse formation. Following this, drying schedule improvements and novel drying technologies are presented with targets to mitigate the drying defects, reduce energy consumption and increase the productivity. Application of artificial intelligence for modeling and control of the timber drying is also briefly described. Finally, recommendations are made for future studies and practical implementation.\",\"PeriodicalId\":11374,\"journal\":{\"name\":\"Drying Technology\",\"volume\":\"41 1\",\"pages\":\"890 - 914\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drying Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07373937.2023.2205530\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drying Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07373937.2023.2205530","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Abstract Wood drying is a key operation of wood processing to ensure that the wood retains its physical integrity and stability in remanufacturing and in use. However, in industrial drying various drying defects still occur, which include uneven moisture content between and within boards, board distortion, residual drying stresses that may induce internal and external checking, and wood collapse. This paper presents a review on advances in wood drying research and development, which lay foundation for better understanding of the drying process, mechanisms of drying defect occurrence and affecting factors. In particular, recent progresses in understanding drying stress development and wood collapse formation during drying are presented in more details. Based on these advances, inter-linkage and interactions are analyzed among wood physical and microstructural properties, moisture movement in wood during drying, stress development and reversal, and wood collapse formation. Following this, drying schedule improvements and novel drying technologies are presented with targets to mitigate the drying defects, reduce energy consumption and increase the productivity. Application of artificial intelligence for modeling and control of the timber drying is also briefly described. Finally, recommendations are made for future studies and practical implementation.
期刊介绍:
Drying Technology explores the science and technology, and the engineering aspects of drying, dewatering, and related topics.
Articles in this multi-disciplinary journal cover the following themes:
-Fundamental and applied aspects of dryers in diverse industrial sectors-
Mathematical modeling of drying and dryers-
Computer modeling of transport processes in multi-phase systems-
Material science aspects of drying-
Transport phenomena in porous media-
Design, scale-up, control and off-design analysis of dryers-
Energy, environmental, safety and techno-economic aspects-
Quality parameters in drying operations-
Pre- and post-drying operations-
Novel drying technologies.
This peer-reviewed journal provides an archival reference for scientists, engineers, and technologists in all industrial sectors and academia concerned with any aspect of thermal or nonthermal dehydration and allied operations.