通过功函数工程调制平面钙钛矿太阳能电池和微型模块的J-V磁滞

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED
Zenghua Wang, Bing Cai, Deyu Xin, Min Zhang, Xiaojia Zheng
{"title":"通过功函数工程调制平面钙钛矿太阳能电池和微型模块的J-V磁滞","authors":"Zenghua Wang,&nbsp;Bing Cai,&nbsp;Deyu Xin,&nbsp;Min Zhang,&nbsp;Xiaojia Zheng","doi":"10.1016/j.jechem.2023.05.031","DOIUrl":null,"url":null,"abstract":"<div><p>Commercialization of perovskite solar cells (PSCs) requires the development of high-efficiency devices with none current density-voltage (<em>J-V</em>) hysteresis. Here, electron transport layers (ETLs) with gradual change in work function (WF) are successfully fabricated and employed as an ideal model to investigate the energy barriers, charge transfer and recombination kinetics at ETL/perovskite interface. The energy barrier for electron injection existing at ETL/perovskite is directly assessed by surface photovoltage microscopy, and the results demonstrate the tunable barriers have significant impact on the <em>J-V</em> hysteresis and performance of PSCs. By work function engineering of ETL, PSCs exhibit PCEs over 21% with negligible hysteresis. These results provide a critical understanding of the origin reason for hysteresis effect in planar PSCs, and clear reveal that the <em>J-V</em> hysteresis can be effectively suppressed by carefully tuning the interface features in PSCs. By extending this strategy to a modified formamidinium-cesium-rubidium (FA-Cs-Rb) perovskite system, the PCEs are further boosted to 24.18%. Moreover, 5 cm × 5 cm perovskite mini-modules are also fabricated with an impressive efficiency of 20.07%, demonstrating compatibility and effectiveness of our strategy on upscaled devices.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modulating J-V hysteresis of planar perovskite solar cells and mini-modules via work function engineering\",\"authors\":\"Zenghua Wang,&nbsp;Bing Cai,&nbsp;Deyu Xin,&nbsp;Min Zhang,&nbsp;Xiaojia Zheng\",\"doi\":\"10.1016/j.jechem.2023.05.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Commercialization of perovskite solar cells (PSCs) requires the development of high-efficiency devices with none current density-voltage (<em>J-V</em>) hysteresis. Here, electron transport layers (ETLs) with gradual change in work function (WF) are successfully fabricated and employed as an ideal model to investigate the energy barriers, charge transfer and recombination kinetics at ETL/perovskite interface. The energy barrier for electron injection existing at ETL/perovskite is directly assessed by surface photovoltage microscopy, and the results demonstrate the tunable barriers have significant impact on the <em>J-V</em> hysteresis and performance of PSCs. By work function engineering of ETL, PSCs exhibit PCEs over 21% with negligible hysteresis. These results provide a critical understanding of the origin reason for hysteresis effect in planar PSCs, and clear reveal that the <em>J-V</em> hysteresis can be effectively suppressed by carefully tuning the interface features in PSCs. By extending this strategy to a modified formamidinium-cesium-rubidium (FA-Cs-Rb) perovskite system, the PCEs are further boosted to 24.18%. Moreover, 5 cm × 5 cm perovskite mini-modules are also fabricated with an impressive efficiency of 20.07%, demonstrating compatibility and effectiveness of our strategy on upscaled devices.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623003182\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623003182","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

钙钛矿太阳能电池(PSC)的商业化需要开发无电流密度-电压(J-V)滞后的高效器件。在这里,成功地制备了功函数(WF)逐渐变化的电子传输层(ETL),并将其用作研究ETL/钙钛矿界面的能垒、电荷转移和复合动力学的理想模型。通过表面光电压显微镜直接评估了ETL/钙钛矿中存在的电子注入能垒,结果表明,可调势垒对PSCs的J-V磁滞和性能有显著影响。通过ETL的功函数工程,PSC表现出超过21%的PCE,迟滞可以忽略不计。这些结果提供了对平面PSC中磁滞效应起源原因的关键理解,并清楚地表明,通过仔细调整PSC中的界面特征,可以有效地抑制J-V磁滞。通过将该策略扩展到改性的甲脒-铯-铷(FA-Cs-Rb)钙钛矿系统,PCE进一步提高到24.18%。此外,还以20.07%的惊人效率制造了5cm×5cm的钙钛矿微型模块,证明了我们的策略在扩大规模的设备上的兼容性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulating J-V hysteresis of planar perovskite solar cells and mini-modules via work function engineering

Modulating J-V hysteresis of planar perovskite solar cells and mini-modules via work function engineering

Commercialization of perovskite solar cells (PSCs) requires the development of high-efficiency devices with none current density-voltage (J-V) hysteresis. Here, electron transport layers (ETLs) with gradual change in work function (WF) are successfully fabricated and employed as an ideal model to investigate the energy barriers, charge transfer and recombination kinetics at ETL/perovskite interface. The energy barrier for electron injection existing at ETL/perovskite is directly assessed by surface photovoltage microscopy, and the results demonstrate the tunable barriers have significant impact on the J-V hysteresis and performance of PSCs. By work function engineering of ETL, PSCs exhibit PCEs over 21% with negligible hysteresis. These results provide a critical understanding of the origin reason for hysteresis effect in planar PSCs, and clear reveal that the J-V hysteresis can be effectively suppressed by carefully tuning the interface features in PSCs. By extending this strategy to a modified formamidinium-cesium-rubidium (FA-Cs-Rb) perovskite system, the PCEs are further boosted to 24.18%. Moreover, 5 cm × 5 cm perovskite mini-modules are also fabricated with an impressive efficiency of 20.07%, demonstrating compatibility and effectiveness of our strategy on upscaled devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信