Hassan Ougraz, Said Safi, A. Boumezzough, M. Frikel
{"title":"几种宽带源定位算法的性能比较","authors":"Hassan Ougraz, Said Safi, A. Boumezzough, M. Frikel","doi":"10.26636/jtit.2023.3.1359","DOIUrl":null,"url":null,"abstract":"In recent years, researchers have tried to estimate the direction-of-arrival (DOA) of wideband sources and several novel techniques have been proposed. In this paper, we compare six algorithms for calculating the DOA of broadband signals, namely coherent subspace signal method (CSSM), two-sided correlation transformation (TCT), incoherent multiple signal classification (IMUSIC), test of orthogonality of frequency subspaces (TOFS), test of orthogonality of projected subspaces (TOPS), and squared TOPS (S-TOPS). The comparison is made through computer simulations for different parameters, such as signal-to-noise ratio (SNR), in order to establish the efficiency and performance of the discussed methods in noisy environments. CSSM and TCT require initial values, but the remaining approaches do not need any preprocessing.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Comparison of Several Algorithms for Localization of Wideband Sources\",\"authors\":\"Hassan Ougraz, Said Safi, A. Boumezzough, M. Frikel\",\"doi\":\"10.26636/jtit.2023.3.1359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, researchers have tried to estimate the direction-of-arrival (DOA) of wideband sources and several novel techniques have been proposed. In this paper, we compare six algorithms for calculating the DOA of broadband signals, namely coherent subspace signal method (CSSM), two-sided correlation transformation (TCT), incoherent multiple signal classification (IMUSIC), test of orthogonality of frequency subspaces (TOFS), test of orthogonality of projected subspaces (TOPS), and squared TOPS (S-TOPS). The comparison is made through computer simulations for different parameters, such as signal-to-noise ratio (SNR), in order to establish the efficiency and performance of the discussed methods in noisy environments. CSSM and TCT require initial values, but the remaining approaches do not need any preprocessing.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2023.3.1359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2023.3.1359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Performance Comparison of Several Algorithms for Localization of Wideband Sources
In recent years, researchers have tried to estimate the direction-of-arrival (DOA) of wideband sources and several novel techniques have been proposed. In this paper, we compare six algorithms for calculating the DOA of broadband signals, namely coherent subspace signal method (CSSM), two-sided correlation transformation (TCT), incoherent multiple signal classification (IMUSIC), test of orthogonality of frequency subspaces (TOFS), test of orthogonality of projected subspaces (TOPS), and squared TOPS (S-TOPS). The comparison is made through computer simulations for different parameters, such as signal-to-noise ratio (SNR), in order to establish the efficiency and performance of the discussed methods in noisy environments. CSSM and TCT require initial values, but the remaining approaches do not need any preprocessing.