L. Addario-Berry, Serte Donderwinkel, M. Maazoun, James Martin
{"title":"Foata-Fuchs对Cayley公式的证明,以及它的概率应用","authors":"L. Addario-Berry, Serte Donderwinkel, M. Maazoun, James Martin","doi":"10.1214/23-ecp523","DOIUrl":null,"url":null,"abstract":"We present a very simple bijective proof of Cayley's formula due to Foata and Fuchs (1970). This bijection turns out to be very useful when seen through a probabilistic lens; we explain some of the ways in which it can be used to derive probabilistic identities, bounds, and growth procedures for random trees with given degrees, including random d-ary trees. We also introduce a partial order on the degree sequences of rooted trees, and conjecture that it induces a stochastic partial order on heights of random rooted trees with given degrees.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Foata–Fuchs proof of Cayley’s formula, and its probabilistic uses\",\"authors\":\"L. Addario-Berry, Serte Donderwinkel, M. Maazoun, James Martin\",\"doi\":\"10.1214/23-ecp523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a very simple bijective proof of Cayley's formula due to Foata and Fuchs (1970). This bijection turns out to be very useful when seen through a probabilistic lens; we explain some of the ways in which it can be used to derive probabilistic identities, bounds, and growth procedures for random trees with given degrees, including random d-ary trees. We also introduce a partial order on the degree sequences of rooted trees, and conjecture that it induces a stochastic partial order on heights of random rooted trees with given degrees.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Foata–Fuchs proof of Cayley’s formula, and its probabilistic uses
We present a very simple bijective proof of Cayley's formula due to Foata and Fuchs (1970). This bijection turns out to be very useful when seen through a probabilistic lens; we explain some of the ways in which it can be used to derive probabilistic identities, bounds, and growth procedures for random trees with given degrees, including random d-ary trees. We also introduce a partial order on the degree sequences of rooted trees, and conjecture that it induces a stochastic partial order on heights of random rooted trees with given degrees.