L. Addario-Berry, Serte Donderwinkel, M. Maazoun, James Martin
{"title":"Foata-Fuchs对Cayley公式的证明,以及它的概率应用","authors":"L. Addario-Berry, Serte Donderwinkel, M. Maazoun, James Martin","doi":"10.1214/23-ecp523","DOIUrl":null,"url":null,"abstract":"We present a very simple bijective proof of Cayley's formula due to Foata and Fuchs (1970). This bijection turns out to be very useful when seen through a probabilistic lens; we explain some of the ways in which it can be used to derive probabilistic identities, bounds, and growth procedures for random trees with given degrees, including random d-ary trees. We also introduce a partial order on the degree sequences of rooted trees, and conjecture that it induces a stochastic partial order on heights of random rooted trees with given degrees.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Foata–Fuchs proof of Cayley’s formula, and its probabilistic uses\",\"authors\":\"L. Addario-Berry, Serte Donderwinkel, M. Maazoun, James Martin\",\"doi\":\"10.1214/23-ecp523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a very simple bijective proof of Cayley's formula due to Foata and Fuchs (1970). This bijection turns out to be very useful when seen through a probabilistic lens; we explain some of the ways in which it can be used to derive probabilistic identities, bounds, and growth procedures for random trees with given degrees, including random d-ary trees. We also introduce a partial order on the degree sequences of rooted trees, and conjecture that it induces a stochastic partial order on heights of random rooted trees with given degrees.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp523\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp523","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The Foata–Fuchs proof of Cayley’s formula, and its probabilistic uses
We present a very simple bijective proof of Cayley's formula due to Foata and Fuchs (1970). This bijection turns out to be very useful when seen through a probabilistic lens; we explain some of the ways in which it can be used to derive probabilistic identities, bounds, and growth procedures for random trees with given degrees, including random d-ary trees. We also introduce a partial order on the degree sequences of rooted trees, and conjecture that it induces a stochastic partial order on heights of random rooted trees with given degrees.
期刊介绍:
The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.