{"title":"三体问题的Koopman降阶控制","authors":"H. Tang","doi":"10.4236/mme.2019.91003","DOIUrl":null,"url":null,"abstract":"In this paper, we use a Circle Restricted Three-Body Problem (CRTBP) to simulate the motion of a satellite. Then we reformulate this problem with the controller into the description using Koopman eigenfunction. Although the original dynamical system is nonlinear, the Koopman eigenfunction behaves linearly. Choosing Jacobi integral as the Koopman eigenfunction and using the zero velocity curve as the reference for control, we are allowed to combine well-developed Linear Quadratic Regulator (LQR) controller to design a nonlinear controller. Using this approach, we design the low thrust orbit transfer strategy for the satellite flying from the earth to the moon or from the earth to the sun.","PeriodicalId":69007,"journal":{"name":"现代机械工程(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Koopman Reduced Order Control for Three Body Problem\",\"authors\":\"H. Tang\",\"doi\":\"10.4236/mme.2019.91003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use a Circle Restricted Three-Body Problem (CRTBP) to simulate the motion of a satellite. Then we reformulate this problem with the controller into the description using Koopman eigenfunction. Although the original dynamical system is nonlinear, the Koopman eigenfunction behaves linearly. Choosing Jacobi integral as the Koopman eigenfunction and using the zero velocity curve as the reference for control, we are allowed to combine well-developed Linear Quadratic Regulator (LQR) controller to design a nonlinear controller. Using this approach, we design the low thrust orbit transfer strategy for the satellite flying from the earth to the moon or from the earth to the sun.\",\"PeriodicalId\":69007,\"journal\":{\"name\":\"现代机械工程(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代机械工程(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/mme.2019.91003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代机械工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/mme.2019.91003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Koopman Reduced Order Control for Three Body Problem
In this paper, we use a Circle Restricted Three-Body Problem (CRTBP) to simulate the motion of a satellite. Then we reformulate this problem with the controller into the description using Koopman eigenfunction. Although the original dynamical system is nonlinear, the Koopman eigenfunction behaves linearly. Choosing Jacobi integral as the Koopman eigenfunction and using the zero velocity curve as the reference for control, we are allowed to combine well-developed Linear Quadratic Regulator (LQR) controller to design a nonlinear controller. Using this approach, we design the low thrust orbit transfer strategy for the satellite flying from the earth to the moon or from the earth to the sun.