关于gs-伪注入模

IF 1.2 Q2 MATHEMATICS, APPLIED
Eman Ayed Naim, Akeel Ramadan Mehdi
{"title":"关于gs-伪注入模","authors":"Eman Ayed Naim, Akeel Ramadan Mehdi","doi":"10.1080/09720529.2022.2082724","DOIUrl":null,"url":null,"abstract":"Abstract As a proper generalization of pseudo-injectivity, we introduce and investigate gs-pseudo-injective modules. A right module M over a ring R is said to be gs-pseudo- N -injective (where N is a right R -module) if every R -monomorphism from a submodule of soc ( N ) soc ( RR ) into M extends to N. A module M is said to be gs-pseudo-injective, if M is gs-pseudo-M-injective. We obtain various characterizations and properties of these modules. Some results on pseudo-injectivity are extended to gs-pseudo-injectivity.","PeriodicalId":46563,"journal":{"name":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","volume":"25 1","pages":"1535 - 1545"},"PeriodicalIF":1.2000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On gs-pseudo-injective modules\",\"authors\":\"Eman Ayed Naim, Akeel Ramadan Mehdi\",\"doi\":\"10.1080/09720529.2022.2082724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As a proper generalization of pseudo-injectivity, we introduce and investigate gs-pseudo-injective modules. A right module M over a ring R is said to be gs-pseudo- N -injective (where N is a right R -module) if every R -monomorphism from a submodule of soc ( N ) soc ( RR ) into M extends to N. A module M is said to be gs-pseudo-injective, if M is gs-pseudo-M-injective. We obtain various characterizations and properties of these modules. Some results on pseudo-injectivity are extended to gs-pseudo-injectivity.\",\"PeriodicalId\":46563,\"journal\":{\"name\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"volume\":\"25 1\",\"pages\":\"1535 - 1545\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09720529.2022.2082724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09720529.2022.2082724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要作为伪注入性的适当推广,我们引入并研究了gs-伪注入模。如果从soc (N) soc (RR)的子模到M的每一个R -单态扩展到N,则称环R上的右模M是gs-伪- N -内射(其中N是一个右R -模),如果M是gs-伪-M-内射,则称模M是gs-伪- N -内射。我们得到了这些模块的各种表征和性质。将拟注入性的一些结果推广到gs-拟注入性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On gs-pseudo-injective modules
Abstract As a proper generalization of pseudo-injectivity, we introduce and investigate gs-pseudo-injective modules. A right module M over a ring R is said to be gs-pseudo- N -injective (where N is a right R -module) if every R -monomorphism from a submodule of soc ( N ) soc ( RR ) into M extends to N. A module M is said to be gs-pseudo-injective, if M is gs-pseudo-M-injective. We obtain various characterizations and properties of these modules. Some results on pseudo-injectivity are extended to gs-pseudo-injectivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
21.40%
发文量
126
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信