圆顶稀土矿床微图矿物探测数据arcgis及主成分分析

Lorraine M. Negrón, Margaret Piranian, M. Amaya, D. Gorski, N. Pingitore
{"title":"圆顶稀土矿床微图矿物探测数据arcgis及主成分分析","authors":"Lorraine M. Negrón, Margaret Piranian, M. Amaya, D. Gorski, N. Pingitore","doi":"10.4236/ampc.2020.102004","DOIUrl":null,"url":null,"abstract":"Rare earth elements (REEs), especially heavy rare earth elements (HREEs), are in demand for their current and emerging applications in advanced technologies. Here we perform computer-driven micro-mapping at the millimeter scale of the minerals that comprise Round Top Mountain, in west Texas, USA. This large rhyolite deposit is enriched in HREEs and such other critical elements as Li, Be, and U. Electron probe microanalysis of 2 × 2 mm areas of thin sections of the rhyolite produced individual maps of 16 elements. These were superimposed to generate a 16-element composition at each pixel. Principal components analysis of elements at each pixel identified the specific mineral at that site. The pixels were then relabeled as the appropriate minerals, thereby producing a single mineral map. The overall mineral composition of the 7 studied samples compared favorably with prior analyses of the Round Top deposit available in the literature. Likewise the range of porosity in the maps was consistent with that of previous direct measurements by water saturation. This new statistical and GIS-based technique provides a robust and unbiased approach to electron microprobe mapping. The study further showed that the high-value yttrofluorite grains exhibited little tendency to cluster with other late-stage trace minerals and that the samples extended the previously documented overall homogeneity of the deposit at field scale to this microscopic scale.","PeriodicalId":68199,"journal":{"name":"材料物理与化学进展(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ArcGISTM and Principal Component Analysis of Probe Data to Micro-Map Minerals in Round Top Rare Earth Deposit\",\"authors\":\"Lorraine M. Negrón, Margaret Piranian, M. Amaya, D. Gorski, N. Pingitore\",\"doi\":\"10.4236/ampc.2020.102004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rare earth elements (REEs), especially heavy rare earth elements (HREEs), are in demand for their current and emerging applications in advanced technologies. Here we perform computer-driven micro-mapping at the millimeter scale of the minerals that comprise Round Top Mountain, in west Texas, USA. This large rhyolite deposit is enriched in HREEs and such other critical elements as Li, Be, and U. Electron probe microanalysis of 2 × 2 mm areas of thin sections of the rhyolite produced individual maps of 16 elements. These were superimposed to generate a 16-element composition at each pixel. Principal components analysis of elements at each pixel identified the specific mineral at that site. The pixels were then relabeled as the appropriate minerals, thereby producing a single mineral map. The overall mineral composition of the 7 studied samples compared favorably with prior analyses of the Round Top deposit available in the literature. Likewise the range of porosity in the maps was consistent with that of previous direct measurements by water saturation. This new statistical and GIS-based technique provides a robust and unbiased approach to electron microprobe mapping. The study further showed that the high-value yttrofluorite grains exhibited little tendency to cluster with other late-stage trace minerals and that the samples extended the previously documented overall homogeneity of the deposit at field scale to this microscopic scale.\",\"PeriodicalId\":68199,\"journal\":{\"name\":\"材料物理与化学进展(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料物理与化学进展(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/ampc.2020.102004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料物理与化学进展(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/ampc.2020.102004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

稀土元素(ree),特别是重稀土元素(hree),由于其在当前和新兴的先进技术中的应用而受到需求。在这里,我们在美国德克萨斯州西部的圆顶山进行计算机驱动的毫米级矿物微测绘。这个大型流纹岩矿床富含稀土元素和其他关键元素,如Li、Be和u。电子探针对流纹岩薄片2 × 2毫米区域进行微量分析,得到了16个元素的单独图。这些被叠加在一起,在每个像素上生成一个16个元素的组合。主成分分析在每个像素上的元素确定了该地点的特定矿物。然后将像素重新标记为适当的矿物,从而生成单个矿物图。7个被研究样品的整体矿物组成与文献中对圆顶矿床的先前分析相比较有利。同样,地图上的孔隙度范围与以前通过水饱和度直接测量的结果一致。这种新的统计和基于gis的技术为电子探针测绘提供了一种稳健和无偏的方法。研究进一步表明,高价值的钇萤石颗粒几乎没有与其他晚期微量矿物聚集的趋势,并且样品将先前在野外尺度上记录的矿床整体均匀性扩展到微观尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ArcGISTM and Principal Component Analysis of Probe Data to Micro-Map Minerals in Round Top Rare Earth Deposit
Rare earth elements (REEs), especially heavy rare earth elements (HREEs), are in demand for their current and emerging applications in advanced technologies. Here we perform computer-driven micro-mapping at the millimeter scale of the minerals that comprise Round Top Mountain, in west Texas, USA. This large rhyolite deposit is enriched in HREEs and such other critical elements as Li, Be, and U. Electron probe microanalysis of 2 × 2 mm areas of thin sections of the rhyolite produced individual maps of 16 elements. These were superimposed to generate a 16-element composition at each pixel. Principal components analysis of elements at each pixel identified the specific mineral at that site. The pixels were then relabeled as the appropriate minerals, thereby producing a single mineral map. The overall mineral composition of the 7 studied samples compared favorably with prior analyses of the Round Top deposit available in the literature. Likewise the range of porosity in the maps was consistent with that of previous direct measurements by water saturation. This new statistical and GIS-based technique provides a robust and unbiased approach to electron microprobe mapping. The study further showed that the high-value yttrofluorite grains exhibited little tendency to cluster with other late-stage trace minerals and that the samples extended the previously documented overall homogeneity of the deposit at field scale to this microscopic scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
369
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信