Rujuta Dhoke, A. Ojha, A. Chaudhary, R. Vijayakumar
{"title":"碳纳米管对生物多元醇基聚氨酯泡沫性能的影响","authors":"Rujuta Dhoke, A. Ojha, A. Chaudhary, R. Vijayakumar","doi":"10.1177/0262489321989005","DOIUrl":null,"url":null,"abstract":"Biopolyols were obtained from liquefaction of sugarcane bagasse and rice husk. Acid and hydroxyl numbers were determined for estimating the polyol value of the liquid products. These prepared biopolyols were mixed with the commercial polyol for the preparation of polyurethane foam (PU). To study the effects of biopolyol on properties of PU foam, various ratios of biopolyol to commercial polyol were used. It was observed that the density and foaming time of the PU foam increases with the increase in biopolyol content. The calculated Isocyanate index showed that sugarcane bagasse polyol can be used to make flexible foam and that rice husk can be used to make rigid foam. Foaming times and full rise times increased with increase in the biopolyol content. The Fourier-transform infrared spectroscopy (FTIR) spectra of prepared foams showed the characteristic peaks related to PU foam. The morphological studies were carried out using scanning electron microscopy (SEM). Thermal conductivity tests proved that the synthesized PU foams can be used as insulating materials. Further, PU foams were also prepared with the incorporation of carbon nanotubes (CNTs) in the polyol. The densities, thermal conductivities and SEM analysis of PU foams with and without carbon nanotubes were compared.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"40 1","pages":"73 - 86"},"PeriodicalIF":1.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489321989005","citationCount":"1","resultStr":"{\"title\":\"Influence of carbon nanotubes on the properties of biopolyol based polyurethane foams\",\"authors\":\"Rujuta Dhoke, A. Ojha, A. Chaudhary, R. Vijayakumar\",\"doi\":\"10.1177/0262489321989005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biopolyols were obtained from liquefaction of sugarcane bagasse and rice husk. Acid and hydroxyl numbers were determined for estimating the polyol value of the liquid products. These prepared biopolyols were mixed with the commercial polyol for the preparation of polyurethane foam (PU). To study the effects of biopolyol on properties of PU foam, various ratios of biopolyol to commercial polyol were used. It was observed that the density and foaming time of the PU foam increases with the increase in biopolyol content. The calculated Isocyanate index showed that sugarcane bagasse polyol can be used to make flexible foam and that rice husk can be used to make rigid foam. Foaming times and full rise times increased with increase in the biopolyol content. The Fourier-transform infrared spectroscopy (FTIR) spectra of prepared foams showed the characteristic peaks related to PU foam. The morphological studies were carried out using scanning electron microscopy (SEM). Thermal conductivity tests proved that the synthesized PU foams can be used as insulating materials. Further, PU foams were also prepared with the incorporation of carbon nanotubes (CNTs) in the polyol. The densities, thermal conductivities and SEM analysis of PU foams with and without carbon nanotubes were compared.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":\"40 1\",\"pages\":\"73 - 86\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0262489321989005\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0262489321989005\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489321989005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Influence of carbon nanotubes on the properties of biopolyol based polyurethane foams
Biopolyols were obtained from liquefaction of sugarcane bagasse and rice husk. Acid and hydroxyl numbers were determined for estimating the polyol value of the liquid products. These prepared biopolyols were mixed with the commercial polyol for the preparation of polyurethane foam (PU). To study the effects of biopolyol on properties of PU foam, various ratios of biopolyol to commercial polyol were used. It was observed that the density and foaming time of the PU foam increases with the increase in biopolyol content. The calculated Isocyanate index showed that sugarcane bagasse polyol can be used to make flexible foam and that rice husk can be used to make rigid foam. Foaming times and full rise times increased with increase in the biopolyol content. The Fourier-transform infrared spectroscopy (FTIR) spectra of prepared foams showed the characteristic peaks related to PU foam. The morphological studies were carried out using scanning electron microscopy (SEM). Thermal conductivity tests proved that the synthesized PU foams can be used as insulating materials. Further, PU foams were also prepared with the incorporation of carbon nanotubes (CNTs) in the polyol. The densities, thermal conductivities and SEM analysis of PU foams with and without carbon nanotubes were compared.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.