{"title":"多线性模型参数的引出","authors":"C. Barrera-Causil, J. C. Correa-Morales","doi":"10.15446/RCE.V44N1.83525","DOIUrl":null,"url":null,"abstract":" \nEstimating the parameters of a multiple linear model is a common task in all areas of sciences. In order to obtain conjugate distributions, the Bayesian estimation of these parameters is usually carried out using noninformative priors. When informative priors are considered in the Bayesian estimation an important problem arises because techniques arerequired to extract information from experts and represent it in an informative prior distribution. Elicitation techniques can be used for suchpurpose even though they are more complex than the traditional methods.\nIn this paper, we propose a technique to construct an informative prior distribution from expert knowledge using hypothetical samples. Our proposal involves building a mental picture of the population of responses at several specific points of the explanatory variables of a given model andindirectly eliciting the mean and the variance at each of these points. In addition, this proposal consists of two steps: the first step describes the elicitation process and the second step shows a simulation process to estimate the model parameters.\n","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elicitation of the Parameters of Multiple Linear Models\",\"authors\":\"C. Barrera-Causil, J. C. Correa-Morales\",\"doi\":\"10.15446/RCE.V44N1.83525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" \\nEstimating the parameters of a multiple linear model is a common task in all areas of sciences. In order to obtain conjugate distributions, the Bayesian estimation of these parameters is usually carried out using noninformative priors. When informative priors are considered in the Bayesian estimation an important problem arises because techniques arerequired to extract information from experts and represent it in an informative prior distribution. Elicitation techniques can be used for suchpurpose even though they are more complex than the traditional methods.\\nIn this paper, we propose a technique to construct an informative prior distribution from expert knowledge using hypothetical samples. Our proposal involves building a mental picture of the population of responses at several specific points of the explanatory variables of a given model andindirectly eliciting the mean and the variance at each of these points. In addition, this proposal consists of two steps: the first step describes the elicitation process and the second step shows a simulation process to estimate the model parameters.\\n\",\"PeriodicalId\":54477,\"journal\":{\"name\":\"Revista Colombiana De Estadistica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana De Estadistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/RCE.V44N1.83525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RCE.V44N1.83525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Elicitation of the Parameters of Multiple Linear Models
Estimating the parameters of a multiple linear model is a common task in all areas of sciences. In order to obtain conjugate distributions, the Bayesian estimation of these parameters is usually carried out using noninformative priors. When informative priors are considered in the Bayesian estimation an important problem arises because techniques arerequired to extract information from experts and represent it in an informative prior distribution. Elicitation techniques can be used for suchpurpose even though they are more complex than the traditional methods.
In this paper, we propose a technique to construct an informative prior distribution from expert knowledge using hypothetical samples. Our proposal involves building a mental picture of the population of responses at several specific points of the explanatory variables of a given model andindirectly eliciting the mean and the variance at each of these points. In addition, this proposal consists of two steps: the first step describes the elicitation process and the second step shows a simulation process to estimate the model parameters.
期刊介绍:
The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication.
The Editorial Committee assumes that the works submitted for evaluation
have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.