多参数Hardy空间理论与多参数奇异积分的端点估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
G. Lu, Jiawei Shen, Lu Zhang
{"title":"多参数Hardy空间理论与多参数奇异积分的端点估计","authors":"G. Lu, Jiawei Shen, Lu Zhang","doi":"10.1090/memo/1388","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is to establish the theory of the multi-parameter Hardy spaces \n\n \n \n H\n p\n \n H^p\n \n\n (\n\n \n \n 0\n >\n p\n ≤\n 1\n \n 0>p\\leq 1\n \n\n) associated to a class of multi-parameter singular integrals extensively studied in the recent book of B. Street (2014), where the \n\n \n \n L\n p\n \n L^p\n \n\n \n\n \n \n (\n 1\n >\n p\n >\n ∞\n )\n \n (1>p>\\infty )\n \n\n estimates are proved for this class of singular integrals. This class of multi-parameter singular integrals are intrinsic to the underlying multi-parameter Carnot-Carathéodory geometry, where the quantitative Frobenius theorem was established by B. Street (2011), and are closely related to both the one-parameter and multi-parameter settings of singular Radon transforms considered by Stein and Street (2011, 2012a, 2012b, 2013).\n\nMore precisely, Street (2014) studied the \n\n \n \n L\n p\n \n L^p\n \n\n \n\n \n \n (\n 1\n >\n p\n >\n ∞\n )\n \n (1>p>\\infty )\n \n\n boundedness, using elementary operators, of a type of generalized multi-parameter Calderón Zygmund operators on smooth and compact manifolds, which include a certain type of singular Radon transforms. In this work, we are interested in the endpoint estimates for the singular integral operators in both one and multi-parameter settings considered by Street (2014). Actually, using the discrete Littlewood-Paley-Stein analysis, we will introduce the Hardy space \n\n \n \n H\n p\n \n H^p\n \n\n (\n\n \n \n 0\n >\n p\n ≤\n 1\n \n 0>p\\leq 1\n \n\n) associated with the multi-parameter structures arising from the multi-parameter Carnot-Carathéodory metrics using the appropriate discrete Littlewood-Paley-Stein square functions, and then establish the Hardy space boundedness of singular integrals in both the single and multi-parameter settings. Our approach is much inspired by the work of Street (2014) where he introduced the notions of elementary operators so that the type of singular integrals under consideration can be decomposed into elementary operators.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Parameter Hardy Spaces Theory and Endpoint Estimates for Multi-Parameter Singular Integrals\",\"authors\":\"G. Lu, Jiawei Shen, Lu Zhang\",\"doi\":\"10.1090/memo/1388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this paper is to establish the theory of the multi-parameter Hardy spaces \\n\\n \\n \\n H\\n p\\n \\n H^p\\n \\n\\n (\\n\\n \\n \\n 0\\n >\\n p\\n ≤\\n 1\\n \\n 0>p\\\\leq 1\\n \\n\\n) associated to a class of multi-parameter singular integrals extensively studied in the recent book of B. Street (2014), where the \\n\\n \\n \\n L\\n p\\n \\n L^p\\n \\n\\n \\n\\n \\n \\n (\\n 1\\n >\\n p\\n >\\n ∞\\n )\\n \\n (1>p>\\\\infty )\\n \\n\\n estimates are proved for this class of singular integrals. This class of multi-parameter singular integrals are intrinsic to the underlying multi-parameter Carnot-Carathéodory geometry, where the quantitative Frobenius theorem was established by B. Street (2011), and are closely related to both the one-parameter and multi-parameter settings of singular Radon transforms considered by Stein and Street (2011, 2012a, 2012b, 2013).\\n\\nMore precisely, Street (2014) studied the \\n\\n \\n \\n L\\n p\\n \\n L^p\\n \\n\\n \\n\\n \\n \\n (\\n 1\\n >\\n p\\n >\\n ∞\\n )\\n \\n (1>p>\\\\infty )\\n \\n\\n boundedness, using elementary operators, of a type of generalized multi-parameter Calderón Zygmund operators on smooth and compact manifolds, which include a certain type of singular Radon transforms. In this work, we are interested in the endpoint estimates for the singular integral operators in both one and multi-parameter settings considered by Street (2014). Actually, using the discrete Littlewood-Paley-Stein analysis, we will introduce the Hardy space \\n\\n \\n \\n H\\n p\\n \\n H^p\\n \\n\\n (\\n\\n \\n \\n 0\\n >\\n p\\n ≤\\n 1\\n \\n 0>p\\\\leq 1\\n \\n\\n) associated with the multi-parameter structures arising from the multi-parameter Carnot-Carathéodory metrics using the appropriate discrete Littlewood-Paley-Stein square functions, and then establish the Hardy space boundedness of singular integrals in both the single and multi-parameter settings. Our approach is much inspired by the work of Street (2014) where he introduced the notions of elementary operators so that the type of singular integrals under consideration can be decomposed into elementary operators.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要目的是建立与B.Street(2014)的新书中广泛研究的一类多参数奇异积分相关的多参数Hardy空间Hp H^p(0>p≤10>p\leq 1)的理论,其中证明了这类奇异积分的Lp L^p(1>p>∞)(1>p>infty)估计。这类多参数奇异积分是基础的多参数Carnot-Carathéodory几何的内在特征,其中定量Frobenius定理是由B.Street(2011)建立的,并且与Stein和Street(20112012a,2012b,2013)考虑的奇异Radon变换的单参数和多参数设置密切相关,Street(2014)利用初等算子研究了光滑紧致流形上一类广义多参数Calderón-Zygmund算子的Lp L^p(1>p>∞)(1>p>\infty)有界性,其中包括某种类型的奇异Radon变换。在这项工作中,我们对Street(2014)考虑的单参数和多参数设置下奇异积分算子的端点估计感兴趣。实际上,使用离散Littlewood-Paley-Stein分析,我们将使用适当的离散Littlewood-Paley-Stein平方函数引入与多参数Carnot-Carathéodory度量产生的多参数结构相关的Hardy空间Hp H^p(0>p≤10>p\leq1),然后建立了奇异积分在单参数和多参数条件下的Hardy空间有界性。我们的方法在很大程度上受到了Street(2014)工作的启发,他在那里引入了初等算子的概念,以便将所考虑的奇异积分类型分解为初等算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Parameter Hardy Spaces Theory and Endpoint Estimates for Multi-Parameter Singular Integrals
The main purpose of this paper is to establish the theory of the multi-parameter Hardy spaces H p H^p ( 0 > p ≤ 1 0>p\leq 1 ) associated to a class of multi-parameter singular integrals extensively studied in the recent book of B. Street (2014), where the L p L^p ( 1 > p > ∞ ) (1>p>\infty ) estimates are proved for this class of singular integrals. This class of multi-parameter singular integrals are intrinsic to the underlying multi-parameter Carnot-Carathéodory geometry, where the quantitative Frobenius theorem was established by B. Street (2011), and are closely related to both the one-parameter and multi-parameter settings of singular Radon transforms considered by Stein and Street (2011, 2012a, 2012b, 2013). More precisely, Street (2014) studied the L p L^p ( 1 > p > ∞ ) (1>p>\infty ) boundedness, using elementary operators, of a type of generalized multi-parameter Calderón Zygmund operators on smooth and compact manifolds, which include a certain type of singular Radon transforms. In this work, we are interested in the endpoint estimates for the singular integral operators in both one and multi-parameter settings considered by Street (2014). Actually, using the discrete Littlewood-Paley-Stein analysis, we will introduce the Hardy space H p H^p ( 0 > p ≤ 1 0>p\leq 1 ) associated with the multi-parameter structures arising from the multi-parameter Carnot-Carathéodory metrics using the appropriate discrete Littlewood-Paley-Stein square functions, and then establish the Hardy space boundedness of singular integrals in both the single and multi-parameter settings. Our approach is much inspired by the work of Street (2014) where he introduced the notions of elementary operators so that the type of singular integrals under consideration can be decomposed into elementary operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信