{"title":"关于根系统的ZETA函数的q-相似性","authors":"Masakimi Kato","doi":"10.2206/kyushujm.76.451","DOIUrl":null,"url":null,"abstract":". Komori, Matsumoto and Tsumura introduced a zeta function ζ r ( s , (cid:49)) associated with a root system (cid:49) . In this paper, we introduce a q -analogue of this zeta function, denoted by ζ r ( s , a , (cid:49) ; q ) , and investigate its properties. We show that a ‘Weyl group symmetric’ linear combination of ζ r ( s , a , (cid:49) ; q ) can be written as a multiple integral over a torus involving functions ψ s . For positive integers k , functions ψ k can be regarded as q -analogues of the periodic Bernoulli polynomials. When (cid:49) is of type A 2 or A 3 , the linear combinations can be expressed as the functions ψ k , which are q -analogues of explicit expressions of Witten’s volume formula. We also introduce a two-parameter deformation of the zeta function ζ r ( s , (cid:49)) and study its properties. ,","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON q-ANALOGUES OF ZETA FUNCTIONS OF ROOT SYSTEMS\",\"authors\":\"Masakimi Kato\",\"doi\":\"10.2206/kyushujm.76.451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Komori, Matsumoto and Tsumura introduced a zeta function ζ r ( s , (cid:49)) associated with a root system (cid:49) . In this paper, we introduce a q -analogue of this zeta function, denoted by ζ r ( s , a , (cid:49) ; q ) , and investigate its properties. We show that a ‘Weyl group symmetric’ linear combination of ζ r ( s , a , (cid:49) ; q ) can be written as a multiple integral over a torus involving functions ψ s . For positive integers k , functions ψ k can be regarded as q -analogues of the periodic Bernoulli polynomials. When (cid:49) is of type A 2 or A 3 , the linear combinations can be expressed as the functions ψ k , which are q -analogues of explicit expressions of Witten’s volume formula. We also introduce a two-parameter deformation of the zeta function ζ r ( s , (cid:49)) and study its properties. ,\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.76.451\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.451","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
. Komori, Matsumoto and Tsumura introduced a zeta function ζ r ( s , (cid:49)) associated with a root system (cid:49) . In this paper, we introduce a q -analogue of this zeta function, denoted by ζ r ( s , a , (cid:49) ; q ) , and investigate its properties. We show that a ‘Weyl group symmetric’ linear combination of ζ r ( s , a , (cid:49) ; q ) can be written as a multiple integral over a torus involving functions ψ s . For positive integers k , functions ψ k can be regarded as q -analogues of the periodic Bernoulli polynomials. When (cid:49) is of type A 2 or A 3 , the linear combinations can be expressed as the functions ψ k , which are q -analogues of explicit expressions of Witten’s volume formula. We also introduce a two-parameter deformation of the zeta function ζ r ( s , (cid:49)) and study its properties. ,
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.