{"title":"关于co-m模商的一些结果","authors":"S. Rajaee","doi":"10.22124/JART.2021.18893.1254","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring with identity and let $M$ be a unitary $R$-module. In this paper, among various results, we prove that if $M$ is a cancellation $R$-module and $L$ is a nonzero simple submodule of $M$, then $L$ is a copure submodule of $M$. Moreover, in this case, if $M$ is co-m, then $M/L$ is also a co-m $R$-module. We investigate various conditions under which the quotient module $M/N$ of a co-m $M$ is also a co-m. We prove that if $M$ is a cancellation Noetherian co-m module, then for every second submodule $N$ of $M$ the quotient module $M/N$ is a co-m $R$-module. We obtain some results concerning socle and radical of co-m modules.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"9 1","pages":"79-92"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on the quotient of co-m modules\",\"authors\":\"S. Rajaee\",\"doi\":\"10.22124/JART.2021.18893.1254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative ring with identity and let $M$ be a unitary $R$-module. In this paper, among various results, we prove that if $M$ is a cancellation $R$-module and $L$ is a nonzero simple submodule of $M$, then $L$ is a copure submodule of $M$. Moreover, in this case, if $M$ is co-m, then $M/L$ is also a co-m $R$-module. We investigate various conditions under which the quotient module $M/N$ of a co-m $M$ is also a co-m. We prove that if $M$ is a cancellation Noetherian co-m module, then for every second submodule $N$ of $M$ the quotient module $M/N$ is a co-m $R$-module. We obtain some results concerning socle and radical of co-m modules.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"9 1\",\"pages\":\"79-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2021.18893.1254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2021.18893.1254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Let $R$ be a commutative ring with identity and let $M$ be a unitary $R$-module. In this paper, among various results, we prove that if $M$ is a cancellation $R$-module and $L$ is a nonzero simple submodule of $M$, then $L$ is a copure submodule of $M$. Moreover, in this case, if $M$ is co-m, then $M/L$ is also a co-m $R$-module. We investigate various conditions under which the quotient module $M/N$ of a co-m $M$ is also a co-m. We prove that if $M$ is a cancellation Noetherian co-m module, then for every second submodule $N$ of $M$ the quotient module $M/N$ is a co-m $R$-module. We obtain some results concerning socle and radical of co-m modules.