{"title":"具有两个最大拉普拉斯特征值的最大和的树","authors":"Yirong Zheng, Jianxi Li, Sarula Chang","doi":"10.13001/ela.2022.7065","DOIUrl":null,"url":null,"abstract":"Let $T$ be a tree of order $n$ and $S_2(T)$ be the sum of the two largest Laplacian eigenvalues of $T$. Fritscher et al. proved that for any tree $T$ of order $n$, $S_2(T) \\leq n+2-\\frac{2}{n}$. Guan et al. determined the tree with maximum $S_2(T)$ among all trees of order $n$. In this paper, we characterize the trees with $S_2(T) \\geq n+1$ among all trees of order $n$ except some trees. Moreover, among all trees of order $n$, we also determine the first $\\lfloor\\frac{n-2}{2}\\rfloor$ trees according to their $S_2(T)$. This extends the result of Guan et al.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trees with maximum sum of the two largest Laplacian eigenvalues\",\"authors\":\"Yirong Zheng, Jianxi Li, Sarula Chang\",\"doi\":\"10.13001/ela.2022.7065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $T$ be a tree of order $n$ and $S_2(T)$ be the sum of the two largest Laplacian eigenvalues of $T$. Fritscher et al. proved that for any tree $T$ of order $n$, $S_2(T) \\\\leq n+2-\\\\frac{2}{n}$. Guan et al. determined the tree with maximum $S_2(T)$ among all trees of order $n$. In this paper, we characterize the trees with $S_2(T) \\\\geq n+1$ among all trees of order $n$ except some trees. Moreover, among all trees of order $n$, we also determine the first $\\\\lfloor\\\\frac{n-2}{2}\\\\rfloor$ trees according to their $S_2(T)$. This extends the result of Guan et al.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.7065\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7065","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Trees with maximum sum of the two largest Laplacian eigenvalues
Let $T$ be a tree of order $n$ and $S_2(T)$ be the sum of the two largest Laplacian eigenvalues of $T$. Fritscher et al. proved that for any tree $T$ of order $n$, $S_2(T) \leq n+2-\frac{2}{n}$. Guan et al. determined the tree with maximum $S_2(T)$ among all trees of order $n$. In this paper, we characterize the trees with $S_2(T) \geq n+1$ among all trees of order $n$ except some trees. Moreover, among all trees of order $n$, we also determine the first $\lfloor\frac{n-2}{2}\rfloor$ trees according to their $S_2(T)$. This extends the result of Guan et al.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.