{"title":"c有界稳定单项式理想的饱和数及其幂","authors":"Reza Abdolmaleki, J. Herzog, G. Zhu","doi":"10.1215/21562261-2022-0013","DOIUrl":null,"url":null,"abstract":"Let $S=K[x_1,\\ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$. In this paper, we compute the socle of $\\cb$-bounded strongly stable ideals and determine that the saturation number of strongly stable ideals and of equigenerated $\\cb$-bounded strongly stable ideals. We also provide explicit formulas for the saturation number $\\sat(I)$ of Veronese type ideals $I$. Using this formula, we show that $\\sat(I^k)$ is quasi-linear from the beginning and we determine the quasi-linear function explicitly.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The saturation number of c-bounded stable monomial ideals and their powers\",\"authors\":\"Reza Abdolmaleki, J. Herzog, G. Zhu\",\"doi\":\"10.1215/21562261-2022-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $S=K[x_1,\\\\ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$. In this paper, we compute the socle of $\\\\cb$-bounded strongly stable ideals and determine that the saturation number of strongly stable ideals and of equigenerated $\\\\cb$-bounded strongly stable ideals. We also provide explicit formulas for the saturation number $\\\\sat(I)$ of Veronese type ideals $I$. Using this formula, we show that $\\\\sat(I^k)$ is quasi-linear from the beginning and we determine the quasi-linear function explicitly.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The saturation number of c-bounded stable monomial ideals and their powers
Let $S=K[x_1,\ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$. In this paper, we compute the socle of $\cb$-bounded strongly stable ideals and determine that the saturation number of strongly stable ideals and of equigenerated $\cb$-bounded strongly stable ideals. We also provide explicit formulas for the saturation number $\sat(I)$ of Veronese type ideals $I$. Using this formula, we show that $\sat(I^k)$ is quasi-linear from the beginning and we determine the quasi-linear function explicitly.