c有界稳定单项式理想的饱和数及其幂

Pub Date : 2019-09-24 DOI:10.1215/21562261-2022-0013
Reza Abdolmaleki, J. Herzog, G. Zhu
{"title":"c有界稳定单项式理想的饱和数及其幂","authors":"Reza Abdolmaleki, J. Herzog, G. Zhu","doi":"10.1215/21562261-2022-0013","DOIUrl":null,"url":null,"abstract":"Let $S=K[x_1,\\ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$. In this paper, we compute the socle of $\\cb$-bounded strongly stable ideals and determine that the saturation number of strongly stable ideals and of equigenerated $\\cb$-bounded strongly stable ideals. We also provide explicit formulas for the saturation number $\\sat(I)$ of Veronese type ideals $I$. Using this formula, we show that $\\sat(I^k)$ is quasi-linear from the beginning and we determine the quasi-linear function explicitly.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The saturation number of c-bounded stable monomial ideals and their powers\",\"authors\":\"Reza Abdolmaleki, J. Herzog, G. Zhu\",\"doi\":\"10.1215/21562261-2022-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $S=K[x_1,\\\\ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$. In this paper, we compute the socle of $\\\\cb$-bounded strongly stable ideals and determine that the saturation number of strongly stable ideals and of equigenerated $\\\\cb$-bounded strongly stable ideals. We also provide explicit formulas for the saturation number $\\\\sat(I)$ of Veronese type ideals $I$. Using this formula, we show that $\\\\sat(I^k)$ is quasi-linear from the beginning and we determine the quasi-linear function explicitly.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$S=K[x_1,\ldots,x_n]$是域$K$上$n$变量的多项式环。本文计算了$\cb$有界强稳定理想的集合,确定了$\cb$有界强稳定理想的饱和数和等价的$\cb$有界强稳定理想的饱和数。我们还给出了维罗内塞型理想的饱和数$\sat(I)$的显式公式。利用这个公式,我们证明$\sat(I^k)$从一开始就是拟线性的,并明确地确定了拟线性函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The saturation number of c-bounded stable monomial ideals and their powers
Let $S=K[x_1,\ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$. In this paper, we compute the socle of $\cb$-bounded strongly stable ideals and determine that the saturation number of strongly stable ideals and of equigenerated $\cb$-bounded strongly stable ideals. We also provide explicit formulas for the saturation number $\sat(I)$ of Veronese type ideals $I$. Using this formula, we show that $\sat(I^k)$ is quasi-linear from the beginning and we determine the quasi-linear function explicitly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信