通过自洽模型系统寻找阿尔茨海默病治疗药物

IF 2.8 4区 医学 Q2 TOXICOLOGY
A. Toropov, A. Toropova, P. Achary, M. Rasková, I. Raška
{"title":"通过自洽模型系统寻找阿尔茨海默病治疗药物","authors":"A. Toropov, A. Toropova, P. Achary, M. Rasková, I. Raška","doi":"10.1080/15376516.2022.2053918","DOIUrl":null,"url":null,"abstract":"Abstract Robust quantitative structure-activity relationships (QSARs) for hBACE-1 inhibitors (pIC50) for a large database (n = 1706) are established. New statistical criteria of the predictive potential of models are suggested and tested. These criteria are the index of ideality of correlation (IIC) and the correlation intensity index (CII). The system of self-consistent models is a new approach to validate the predictive potential of QSAR-models. The statistical quality of models obtained using the CORAL software (http://www.insilico.eu/coral) for the validation sets is characterized by the average determination coefficient R2 v= 0.923, and RMSE = 0.345. Three new promising molecular structures which can become inhibitors hBACE-1 are suggested.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"32 1","pages":"549 - 557"},"PeriodicalIF":2.8000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The searching for agents for Alzheimer’s disease treatment via the system of self-consistent models\",\"authors\":\"A. Toropov, A. Toropova, P. Achary, M. Rasková, I. Raška\",\"doi\":\"10.1080/15376516.2022.2053918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Robust quantitative structure-activity relationships (QSARs) for hBACE-1 inhibitors (pIC50) for a large database (n = 1706) are established. New statistical criteria of the predictive potential of models are suggested and tested. These criteria are the index of ideality of correlation (IIC) and the correlation intensity index (CII). The system of self-consistent models is a new approach to validate the predictive potential of QSAR-models. The statistical quality of models obtained using the CORAL software (http://www.insilico.eu/coral) for the validation sets is characterized by the average determination coefficient R2 v= 0.923, and RMSE = 0.345. Three new promising molecular structures which can become inhibitors hBACE-1 are suggested.\",\"PeriodicalId\":49117,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\"32 1\",\"pages\":\"549 - 557\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2022.2053918\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2022.2053918","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 10

摘要

在一个大型数据库(n = 1706)中建立了hBACE-1抑制剂(pIC50)的稳健定量构效关系(QSARs)。提出并检验了模型预测潜力的新统计准则。这两个指标分别是相关理想指数(IIC)和相关强度指数(CII)。自洽模型系统是验证qsar模型预测潜力的一种新方法。使用CORAL软件(http://www.insilico.eu/coral)对验证集获得的模型统计质量的特征是平均决定系数R2 v= 0.923, RMSE = 0.345。提出了三种新的有希望成为hBACE-1抑制剂的分子结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The searching for agents for Alzheimer’s disease treatment via the system of self-consistent models
Abstract Robust quantitative structure-activity relationships (QSARs) for hBACE-1 inhibitors (pIC50) for a large database (n = 1706) are established. New statistical criteria of the predictive potential of models are suggested and tested. These criteria are the index of ideality of correlation (IIC) and the correlation intensity index (CII). The system of self-consistent models is a new approach to validate the predictive potential of QSAR-models. The statistical quality of models obtained using the CORAL software (http://www.insilico.eu/coral) for the validation sets is characterized by the average determination coefficient R2 v= 0.923, and RMSE = 0.345. Three new promising molecular structures which can become inhibitors hBACE-1 are suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
3.10%
发文量
66
期刊介绍: Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy. Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including: In vivo studies with standard and alternative species In vitro studies and alternative methodologies Molecular, biochemical, and cellular techniques Pharmacokinetics and pharmacodynamics Mathematical modeling and computer programs Forensic analyses Risk assessment Data collection and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信